Improvement of voltage stability and loadability of power system employing the placement of unified power flow controller using artificial neural network
Muhammad Khalid Saifullah, Md. Monirul Kabir, K. Rafiqul Islam
{"title":"Improvement of voltage stability and loadability of power system employing the placement of unified power flow controller using artificial neural network","authors":"Muhammad Khalid Saifullah, Md. Monirul Kabir, K. Rafiqul Islam","doi":"10.11591/ijece.v13i5.pp4868-4877","DOIUrl":null,"url":null,"abstract":"This paper proposes a voltage stability and loadability improvement model of power systems by incorporating the optimal placement of flexible alternating current transmission systems (FACTS) using an artificial neural network (ANN) called OPFANN. The key aspect of this model is to identify the weakest lines which having the most probability of voltage collapse utilized for placing FACTS devices. As installing a new power system network with rapidly increasing power demand cannot be possible, the operator usually operates the power system close to the stability limit. In this regard, continuous monitoring and improvement of system voltage stability and loadability of the existing system are vital issues for energy management systems nowadays. However, the proposed OPFANN introduces a more straightforward and faster scheme for voltage stability monitoring systems using ANN. Intelligent and reliable data samples have been designed to train the ANN based on two-line voltage stability indices (LVSI) techniques. Compared with other works, OPFANN effectively improves voltage stability and loadability at the load point by installing the unified power flow controller (UPFC) FACTS devices to the weakest lines. OPFANN can provide information on voltage collapse points using ANN and reduce the further computational cost of LVSI. Finally, OPFANN ensures faster and more secure operation of the power system.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp4868-4877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a voltage stability and loadability improvement model of power systems by incorporating the optimal placement of flexible alternating current transmission systems (FACTS) using an artificial neural network (ANN) called OPFANN. The key aspect of this model is to identify the weakest lines which having the most probability of voltage collapse utilized for placing FACTS devices. As installing a new power system network with rapidly increasing power demand cannot be possible, the operator usually operates the power system close to the stability limit. In this regard, continuous monitoring and improvement of system voltage stability and loadability of the existing system are vital issues for energy management systems nowadays. However, the proposed OPFANN introduces a more straightforward and faster scheme for voltage stability monitoring systems using ANN. Intelligent and reliable data samples have been designed to train the ANN based on two-line voltage stability indices (LVSI) techniques. Compared with other works, OPFANN effectively improves voltage stability and loadability at the load point by installing the unified power flow controller (UPFC) FACTS devices to the weakest lines. OPFANN can provide information on voltage collapse points using ANN and reduce the further computational cost of LVSI. Finally, OPFANN ensures faster and more secure operation of the power system.
期刊介绍:
International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]