Model order reduction based on Runge–Kutta neural networks

IF 2.4 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE DataCentric Engineering Pub Date : 2021-03-25 DOI:10.1017/dce.2021.15
Qinyu Zhuang, Juan M Lorenzi, H. Bungartz, D. Hartmann
{"title":"Model order reduction based on Runge–Kutta neural networks","authors":"Qinyu Zhuang, Juan M Lorenzi, H. Bungartz, D. Hartmann","doi":"10.1017/dce.2021.15","DOIUrl":null,"url":null,"abstract":"Abstract Model order reduction (MOR) methods enable the generation of real-time-capable digital twins, with the potential to unlock various novel value streams in industry. While traditional projection-based methods are robust and accurate for linear problems, incorporating machine learning to deal with nonlinearity becomes a new choice for reducing complex problems. These kinds of methods are independent to the numerical solver for the full order model and keep the nonintrusiveness of the whole workflow. Such methods usually consist of two steps. The first step is the dimension reduction by a projection-based method, and the second is the model reconstruction by a neural network (NN). In this work, we apply some modifications for both steps respectively and investigate how they are impacted by testing with three different simulation models. In all cases Proper orthogonal decomposition is used for dimension reduction. For this step, the effects of generating the snapshot database with constant input parameters is compared with time-dependent input parameters. For the model reconstruction step, three types of NN architectures are compared: multilayer perceptron (MLP), explicit Euler NN (EENN), and Runge–Kutta NN (RKNN). The MLPs learn the system state directly, whereas EENNs and RKNNs learn the derivative of system state and predict the new state as a numerical integrator. In the tests, RKNNs show their advantage as the network architecture informed by higher-order numerical strategy.","PeriodicalId":34169,"journal":{"name":"DataCentric Engineering","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DataCentric Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/dce.2021.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract Model order reduction (MOR) methods enable the generation of real-time-capable digital twins, with the potential to unlock various novel value streams in industry. While traditional projection-based methods are robust and accurate for linear problems, incorporating machine learning to deal with nonlinearity becomes a new choice for reducing complex problems. These kinds of methods are independent to the numerical solver for the full order model and keep the nonintrusiveness of the whole workflow. Such methods usually consist of two steps. The first step is the dimension reduction by a projection-based method, and the second is the model reconstruction by a neural network (NN). In this work, we apply some modifications for both steps respectively and investigate how they are impacted by testing with three different simulation models. In all cases Proper orthogonal decomposition is used for dimension reduction. For this step, the effects of generating the snapshot database with constant input parameters is compared with time-dependent input parameters. For the model reconstruction step, three types of NN architectures are compared: multilayer perceptron (MLP), explicit Euler NN (EENN), and Runge–Kutta NN (RKNN). The MLPs learn the system state directly, whereas EENNs and RKNNs learn the derivative of system state and predict the new state as a numerical integrator. In the tests, RKNNs show their advantage as the network architecture informed by higher-order numerical strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Runge-Kutta神经网络的模型降阶
模型降阶(MOR)方法能够生成具有实时能力的数字孪生,具有解锁工业中各种新颖价值流的潜力。传统的基于投影的方法对于线性问题具有鲁棒性和准确性,而结合机器学习来处理非线性问题成为简化复杂问题的新选择。这些方法独立于全阶模型的数值求解,保持了整个工作流的非侵入性。这种方法通常包括两个步骤。第一步是基于投影的降维方法,第二步是基于神经网络的模型重建。在这项工作中,我们分别对这两个步骤进行了一些修改,并研究了用三种不同的仿真模型进行测试对它们的影响。在所有情况下,适当的正交分解用于降维。对于这一步,将使用恒定输入参数生成快照数据库的效果与依赖于时间的输入参数进行比较。对于模型重建步骤,比较了三种类型的神经网络架构:多层感知器(MLP),显式欧拉神经网络(EENN)和龙格-库塔神经网络(RKNN)。mlp直接学习系统状态,而eenn和rknn学习系统状态的导数并作为数值积分器预测新状态。在测试中,rknn显示了其作为由高阶数值策略通知的网络架构的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
DataCentric Engineering
DataCentric Engineering Engineering-General Engineering
CiteScore
5.60
自引率
0.00%
发文量
26
审稿时长
12 weeks
期刊最新文献
Semantic 3D city interfaces—Intelligent interactions on dynamic geospatial knowledge graphs Optical network physical layer parameter optimization for digital backpropagation using Gaussian processes Finite element model updating with quantified uncertainties using point cloud data Evaluating probabilistic forecasts for maritime engineering operations Bottom-up forecasting: Applications and limitations in load forecasting using smart-meter data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1