{"title":"IDENTIFICATION AND CHARACTERIZATION OF CASSAVA MUTANT GENOTYPES WITH HIGH LEAF MINERAL CONTENT AT THE MV10 GENERATION","authors":"SN Pratama, Sudarsono, SW Ardie, D. Sukma","doi":"10.54910/sabrao2023.55.3.19","DOIUrl":null,"url":null,"abstract":"Cassava leaves’ consumption as vegetables are common in several Asian countries. They contain various nutrients, such as, anthocyanins, carotene, minerals, and vitamins. New varieties with high mineral contents in leaves need development to increase the leaves’ quality as vegetables. This study aimed to identify and characterize cassava genotypes of the MV10 generation resulting from gammaray- induced mutations based on the leaves' morphology, growth characteristics, and mineral contents, using two cultivars and 10 cassava genotypes. All genotypes planted in a randomized complete block design had three replications. The leaf's morphology and mineral contents underwent scrutiny on the third to fifth leaf below the apical shoot. The mineral content analysis used the Atomic Absorption Spectrophotometry method. Data analysis comprised the ANOVA test and descriptive analysis. This study revealed petiole length, leaf lobe length, and leaf lobe width were significantly different between genotypes at four months after planting (MAP). However, no meaningful difference showed for the plant height, stem diameter, and number of leaves among genotypes. In general, the leaf morphology consisted of purplish green apical leaves with present pubescence; the shape of the central leaflet is lanceolate; the petiole color is reddish to greenish; leaves are dark green with five to seven leaf lobes; leaf veins are reddish-green; smooth lobe margins; and horizontal petiole orientation. The genotypes affect mineral contents, as the genotype with the highest Mg contents was G6-2-15-5-3, and the one with the highest Zn contents was G2D1-422. Fe contents showed more variations between genotypes, and no genotype showed consistently high Fe contents. This research produced promising genotypes for Mg or Zn contents in leaves for future cassava varieties for vegetable production.","PeriodicalId":21328,"journal":{"name":"Sabrao Journal of Breeding and Genetics","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sabrao Journal of Breeding and Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54910/sabrao2023.55.3.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cassava leaves’ consumption as vegetables are common in several Asian countries. They contain various nutrients, such as, anthocyanins, carotene, minerals, and vitamins. New varieties with high mineral contents in leaves need development to increase the leaves’ quality as vegetables. This study aimed to identify and characterize cassava genotypes of the MV10 generation resulting from gammaray- induced mutations based on the leaves' morphology, growth characteristics, and mineral contents, using two cultivars and 10 cassava genotypes. All genotypes planted in a randomized complete block design had three replications. The leaf's morphology and mineral contents underwent scrutiny on the third to fifth leaf below the apical shoot. The mineral content analysis used the Atomic Absorption Spectrophotometry method. Data analysis comprised the ANOVA test and descriptive analysis. This study revealed petiole length, leaf lobe length, and leaf lobe width were significantly different between genotypes at four months after planting (MAP). However, no meaningful difference showed for the plant height, stem diameter, and number of leaves among genotypes. In general, the leaf morphology consisted of purplish green apical leaves with present pubescence; the shape of the central leaflet is lanceolate; the petiole color is reddish to greenish; leaves are dark green with five to seven leaf lobes; leaf veins are reddish-green; smooth lobe margins; and horizontal petiole orientation. The genotypes affect mineral contents, as the genotype with the highest Mg contents was G6-2-15-5-3, and the one with the highest Zn contents was G2D1-422. Fe contents showed more variations between genotypes, and no genotype showed consistently high Fe contents. This research produced promising genotypes for Mg or Zn contents in leaves for future cassava varieties for vegetable production.
期刊介绍:
The SABRAO Journal of Breeding and Genetics is an international journal of plant breeding and genetics research and was first published in 1969. It is the official publication of the Society for the Advancement of Breeding Research in Asia and Oceania (SABRAO).
Its objectives are to: promote the international exchange of research information on plant breeding and genetics, by describing new research findings, or ideas of a basic or practical nature; and be a medium for the exchange of ideas and news regarding members of the Society.
The Journal gives priority to articles that are of direct relevance to plant breeders and with emphasis on the Asian region. Invited for publication are research articles, short communications, methods, reviews, commentaries, and opinion articles. Scientific contributions are refereed and edited to international standards.
The journal publishes articles for SABRAO members mainly. The Journal preferred strongly that at least one author should be a current member of the Society. Non-members may also publish in the journal.