OpenFact: Factuality Enhanced Open Knowledge Extraction

IF 4.2 1区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Transactions of the Association for Computational Linguistics Pub Date : 2023-06-01 DOI:10.1162/tacl_a_00569
Linfeng Song, Ante Wang, Xiaoman Pan, Hongming Zhang, Dian Yu, Lifeng Jin, Haitao Mi, Jinsong Su, Yue Zhang, Dong Yu
{"title":"OpenFact: Factuality Enhanced Open Knowledge Extraction","authors":"Linfeng Song, Ante Wang, Xiaoman Pan, Hongming Zhang, Dian Yu, Lifeng Jin, Haitao Mi, Jinsong Su, Yue Zhang, Dong Yu","doi":"10.1162/tacl_a_00569","DOIUrl":null,"url":null,"abstract":"We focus on the factuality property during the extraction of an OpenIE corpus named OpenFact, which contains more than 12 million high-quality knowledge triplets. We break down the factuality property into two important aspects—expressiveness and groundedness—and we propose a comprehensive framework to handle both aspects. To enhance expressiveness, we formulate each knowledge piece in OpenFact based on a semantic frame. We also design templates, extra constraints, and adopt human efforts so that most OpenFact triplets contain enough details. For groundedness, we require the main arguments of each triplet to contain linked Wikidata1 entities. A human evaluation suggests that the OpenFact triplets are much more accurate and contain denser information compared to OPIEC-Linked (Gashteovski et al., 2019), one recent high-quality OpenIE corpus grounded to Wikidata. Further experiments on knowledge base completion and knowledge base question answering show the effectiveness of OpenFact over OPIEC-Linked as supplementary knowledge to Wikidata as the major KG.","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"11 1","pages":"686-702"},"PeriodicalIF":4.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Association for Computational Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1162/tacl_a_00569","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We focus on the factuality property during the extraction of an OpenIE corpus named OpenFact, which contains more than 12 million high-quality knowledge triplets. We break down the factuality property into two important aspects—expressiveness and groundedness—and we propose a comprehensive framework to handle both aspects. To enhance expressiveness, we formulate each knowledge piece in OpenFact based on a semantic frame. We also design templates, extra constraints, and adopt human efforts so that most OpenFact triplets contain enough details. For groundedness, we require the main arguments of each triplet to contain linked Wikidata1 entities. A human evaluation suggests that the OpenFact triplets are much more accurate and contain denser information compared to OPIEC-Linked (Gashteovski et al., 2019), one recent high-quality OpenIE corpus grounded to Wikidata. Further experiments on knowledge base completion and knowledge base question answering show the effectiveness of OpenFact over OPIEC-Linked as supplementary knowledge to Wikidata as the major KG.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OpenFact:事实增强的开放知识提取
我们在提取名为OpenFact的OpenIE语料库的过程中重点研究了真实性,该语料库包含超过1200万个高质量的知识三元组。我们将事实性属性分解为两个重要方面——表现性和基础性,并提出了一个处理这两个方面的综合框架。为了增强表达能力,我们在OpenFact中基于语义框架来制定每个知识片段。我们还设计了模板、额外的约束,并采用人工操作,以便大多数OpenFact三元组都包含足够的细节。对于基础性,我们要求每个三元组的主要参数包含链接的Wikidata1实体。一项人类评估表明,与最近基于维基数据的高质量OpenIE语料库OPIEC Linked(Gashteovski et al.,2019)相比,OpenFact三元组更准确,包含更密集的信息。对知识库完成和知识库问答的进一步实验表明,OpenFact对作为补充知识链接到Wikidata作为主要KG的OPIEC的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
32.60
自引率
4.60%
发文量
58
审稿时长
8 weeks
期刊介绍: The highly regarded quarterly journal Computational Linguistics has a companion journal called Transactions of the Association for Computational Linguistics. This open access journal publishes articles in all areas of natural language processing and is an important resource for academic and industry computational linguists, natural language processing experts, artificial intelligence and machine learning investigators, cognitive scientists, speech specialists, as well as linguists and philosophers. The journal disseminates work of vital relevance to these professionals on an annual basis.
期刊最新文献
General then Personal: Decoupling and Pre-training for Personalized Headline Generation MissModal: Increasing Robustness to Missing Modality in Multimodal Sentiment Analysis Removing Backdoors in Pre-trained Models by Regularized Continual Pre-training Learning More from Mixed Emotions: A Label Refinement Method for Emotion Recognition in Conversations An Efficient Self-Supervised Cross-View Training For Sentence Embedding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1