Tobias Gummer, Ruben L. Bach, Jessica Daikeler, S. Eckman
{"title":"The Relationship Between Response Probabilities and Data Quality in Grid Questions","authors":"Tobias Gummer, Ruben L. Bach, Jessica Daikeler, S. Eckman","doi":"10.18148/SRM/2021.V15I1.7727","DOIUrl":null,"url":null,"abstract":"Response probabilities are used in adaptive and responsive survey designs to guide data collection efforts, often with the goal of diversifying the sample composition. However, if response probabilities are also correlated with measurement error, this approach could introduce bias into survey data. This study analyzes the relationship between response probabilities and data quality in grid questions. Drawing on data from the probability-based GESIS panel, we found low propensity cases to more frequently produce item nonresponse and nondifferentiated answers than high propensity cases. However, this effect was observed only among long-time respondents, not among those who joined more recently. We caution that using adaptive or responsive techniques may increase measurement error while reducing the risk of nonresponse bias.","PeriodicalId":46454,"journal":{"name":"Survey Research Methods","volume":"15 1","pages":"65-77"},"PeriodicalIF":0.9000,"publicationDate":"2021-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Survey Research Methods","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.18148/SRM/2021.V15I1.7727","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Response probabilities are used in adaptive and responsive survey designs to guide data collection efforts, often with the goal of diversifying the sample composition. However, if response probabilities are also correlated with measurement error, this approach could introduce bias into survey data. This study analyzes the relationship between response probabilities and data quality in grid questions. Drawing on data from the probability-based GESIS panel, we found low propensity cases to more frequently produce item nonresponse and nondifferentiated answers than high propensity cases. However, this effect was observed only among long-time respondents, not among those who joined more recently. We caution that using adaptive or responsive techniques may increase measurement error while reducing the risk of nonresponse bias.