Over-parametrized deep neural networks minimizing the empirical risk do not generalize well

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2021-11-01 DOI:10.3150/21-BEJ1323
M. Kohler, A. Krzyżak
{"title":"Over-parametrized deep neural networks minimizing the empirical risk do not generalize well","authors":"M. Kohler, A. Krzyżak","doi":"10.3150/21-BEJ1323","DOIUrl":null,"url":null,"abstract":"Recently it was shown in several papers that backpropagation is able to find the global minimum of the empirical risk on the training data using over-parametrized deep neural networks. In this paper, a similar result is shown for deep neural networks with the sigmoidal squasher activation function in a regression setting, and a lower bound is presented which proves that these networks do not generalize well on a new data in the sense that networks which minimize the empirical risk do not achieve the optimal minimax rate of convergence for estimation of smooth regression functions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/21-BEJ1323","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11

Abstract

Recently it was shown in several papers that backpropagation is able to find the global minimum of the empirical risk on the training data using over-parametrized deep neural networks. In this paper, a similar result is shown for deep neural networks with the sigmoidal squasher activation function in a regression setting, and a lower bound is presented which proves that these networks do not generalize well on a new data in the sense that networks which minimize the empirical risk do not achieve the optimal minimax rate of convergence for estimation of smooth regression functions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
过度参数化的深度神经网络使经验风险最小化,但泛化效果不佳
最近有几篇论文表明,反向传播能够利用过参数化深度神经网络在训练数据上找到经验风险的全局最小值。在本文中,对于具有s型压碎激活函数的深度神经网络,在回归设置中得到了类似的结果,并给出了一个下界,证明这些网络在新数据上不能很好地泛化,即最小化经验风险的网络不能达到光滑回归函数估计的最优最小最大收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1