{"title":"Computational mimicking of surgical leaflet suturing for virtual aortic valve neocuspidization","authors":"A. Liogky","doi":"10.1515/rnam-2022-0023","DOIUrl":null,"url":null,"abstract":"Abstract The aortic valve neocuspidization (AVNeo) procedure requires the design of patient-specific neo-cusps which can be made numerically through the neovalve closure modelling. Prior the simulation, it is required to ‘suture virtually’ the neocusps into the patient’s aortic geometry, i.e., to find such state in which the neocusps are placed in the aortic root lumen without intersections of physical surfaces and neo-valve prolapse, and the position of the suture boundary satisfies the boundary conditions. To solve this problem, we tried to mimic neocusps suturing in Ozaki’s operation. As a result, we propose a new algorithm for ‘virtual suturing’ of given neocusps, considered as thin shells. The approach is able to work with both small and large (compared to an optimal size) neocusps and to handle each cusp independently of the others.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":"37 1","pages":"263 - 277"},"PeriodicalIF":0.5000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Numerical Analysis and Mathematical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2022-0023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The aortic valve neocuspidization (AVNeo) procedure requires the design of patient-specific neo-cusps which can be made numerically through the neovalve closure modelling. Prior the simulation, it is required to ‘suture virtually’ the neocusps into the patient’s aortic geometry, i.e., to find such state in which the neocusps are placed in the aortic root lumen without intersections of physical surfaces and neo-valve prolapse, and the position of the suture boundary satisfies the boundary conditions. To solve this problem, we tried to mimic neocusps suturing in Ozaki’s operation. As a result, we propose a new algorithm for ‘virtual suturing’ of given neocusps, considered as thin shells. The approach is able to work with both small and large (compared to an optimal size) neocusps and to handle each cusp independently of the others.
期刊介绍:
The Russian Journal of Numerical Analysis and Mathematical Modelling, published bimonthly, provides English translations of selected new original Russian papers on the theoretical aspects of numerical analysis and the application of mathematical methods to simulation and modelling. The editorial board, consisting of the most prominent Russian scientists in numerical analysis and mathematical modelling, selects papers on the basis of their high scientific standard, innovative approach and topical interest.
Topics:
-numerical analysis-
numerical linear algebra-
finite element methods for PDEs-
iterative methods-
Monte-Carlo methods-
mathematical modelling and numerical simulation in geophysical hydrodynamics, immunology and medicine, fluid mechanics and electrodynamics, geosciences.