Yong Tian, R. Yu, Fanxiu Chen, Fanzhen Meng, Zhaojun Zhang
{"title":"Experimental study on acoustic emission stress memory function of rock-like specimens under uniaxial compression","authors":"Yong Tian, R. Yu, Fanxiu Chen, Fanzhen Meng, Zhaojun Zhang","doi":"10.1177/10567895231183008","DOIUrl":null,"url":null,"abstract":"The Kaiser effect in rock acoustic emission (AE) test is the most direct manifestation of rock memory function. This article focuses on the influence of different deformation stages and different historical stress conditions on stress memory function, and conducts AE testing of rock-like specimens. It explained the stress memory function in AE testing from the perspectives of crack propagation and damage accumulation. The crack initiation stress σci and crack damage stress σcd of specimens were obtained based on the stress-strain curve method, and the different deformation stages were divided. The damage evolution coefficient D e was proposed to measure the size of the stable development range of damage based on the normalized crack initiation and crack damage stress. The historical stress in the elastic stage could be easily identified from the Kaiser effect during the reloading process, even if the time interval reached 120 hours. The Felicity effect appeared during the reloading process when the historical stress was in the stage of stable crack propagation, and the FR value showed a decreasing trend with the extension of the time interval between loading tests. The loading history in the elastic stage was a training for the AE stress memory function under complex historical stress conditions, which restored the Kaiser effect in the stage of stable crack propagation. The distribution of AE events and CT scanning results were also analyzed in the article, and the damage accumulation information characterized by both are basically consistent. The double Kaiser effect phenomenon appeared in the AE test under complex historical stress conditions, although the criterion for discriminating the AE signal at the Kaiser effect point corresponding to the lower stress remained to be further studied and verified.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"32 1","pages":"1008 - 1027"},"PeriodicalIF":4.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895231183008","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Kaiser effect in rock acoustic emission (AE) test is the most direct manifestation of rock memory function. This article focuses on the influence of different deformation stages and different historical stress conditions on stress memory function, and conducts AE testing of rock-like specimens. It explained the stress memory function in AE testing from the perspectives of crack propagation and damage accumulation. The crack initiation stress σci and crack damage stress σcd of specimens were obtained based on the stress-strain curve method, and the different deformation stages were divided. The damage evolution coefficient D e was proposed to measure the size of the stable development range of damage based on the normalized crack initiation and crack damage stress. The historical stress in the elastic stage could be easily identified from the Kaiser effect during the reloading process, even if the time interval reached 120 hours. The Felicity effect appeared during the reloading process when the historical stress was in the stage of stable crack propagation, and the FR value showed a decreasing trend with the extension of the time interval between loading tests. The loading history in the elastic stage was a training for the AE stress memory function under complex historical stress conditions, which restored the Kaiser effect in the stage of stable crack propagation. The distribution of AE events and CT scanning results were also analyzed in the article, and the damage accumulation information characterized by both are basically consistent. The double Kaiser effect phenomenon appeared in the AE test under complex historical stress conditions, although the criterion for discriminating the AE signal at the Kaiser effect point corresponding to the lower stress remained to be further studied and verified.
期刊介绍:
Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics.
Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department.
The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).