The effect of machining parameters on the surface quality of 3D printed and cast polyamide

IF 2.7 4区 工程技术 Q2 ENGINEERING, MANUFACTURING Machining Science and Technology Pub Date : 2021-09-03 DOI:10.1080/10910344.2021.1971704
Tuğçe Tezel
{"title":"The effect of machining parameters on the surface quality of 3D printed and cast polyamide","authors":"Tuğçe Tezel","doi":"10.1080/10910344.2021.1971704","DOIUrl":null,"url":null,"abstract":"Abstract Fused deposition modeling (FDM) is an additive manufacturing (AM) technique that has emerged as a suitable application in different areas, including machine design and manufacturing. The main advantages of this method over conventional methods include that it is faster and produces less material waste. Besides, AM offers computer-aided design and manufacturing but does not include any limitations on the product's geometry and does not require any extra tools. End milling is a conventional manufacturing process used for profiling, slotting, and facing. In this study, at the point of overcoming the weaknesses of AM surface quality, it was investigated whether the cast polymer's surface quality could be reached with hybrid manufacturing (AM + milling). For this reason, the parts produced by FDM were subjected to end milling, and the effect of cutting depth, feed rate, and rotation speed on surface quality and chip type were investigated. The results obtained are compared with the results of the milling operation of cast polyamide. For all results, surface quality increases with a rising feed rate. In general, the surface quality obtained by milling parts produced using FDM is low, but each manufacturing technique is affected differently by the end milling conditions. Low rotation speed and high feed rates should be preferred to obtain the desired surface quality from FDM printed polyamide parts.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":"25 1","pages":"703 - 720"},"PeriodicalIF":2.7000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2021.1971704","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract Fused deposition modeling (FDM) is an additive manufacturing (AM) technique that has emerged as a suitable application in different areas, including machine design and manufacturing. The main advantages of this method over conventional methods include that it is faster and produces less material waste. Besides, AM offers computer-aided design and manufacturing but does not include any limitations on the product's geometry and does not require any extra tools. End milling is a conventional manufacturing process used for profiling, slotting, and facing. In this study, at the point of overcoming the weaknesses of AM surface quality, it was investigated whether the cast polymer's surface quality could be reached with hybrid manufacturing (AM + milling). For this reason, the parts produced by FDM were subjected to end milling, and the effect of cutting depth, feed rate, and rotation speed on surface quality and chip type were investigated. The results obtained are compared with the results of the milling operation of cast polyamide. For all results, surface quality increases with a rising feed rate. In general, the surface quality obtained by milling parts produced using FDM is low, but each manufacturing technique is affected differently by the end milling conditions. Low rotation speed and high feed rates should be preferred to obtain the desired surface quality from FDM printed polyamide parts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加工参数对3D打印和铸造聚酰胺表面质量的影响
摘要:熔融沉积建模(FDM)是一种增材制造(AM)技术,在包括机械设计和制造在内的不同领域得到了广泛的应用。与传统方法相比,这种方法的主要优点包括速度更快,产生的材料浪费更少。此外,增材制造提供计算机辅助设计和制造,但不包括对产品几何形状的任何限制,也不需要任何额外的工具。立铣削是一种传统的制造工艺,用于型材、开槽和饰面。在克服增材制造表面质量缺陷的基础上,研究了复合制造(增材制造+铣削加工)能否达到铸造聚合物的表面质量。为此,对FDM加工的零件进行了立铣削加工,研究了切削深度、进给速度和转速对工件表面质量和切屑类型的影响。所得结果与铸造聚酰胺的铣削加工结果进行了比较。对于所有结果,表面质量随着进给量的增加而增加。一般来说,铣削用FDM生产的零件得到的表面质量很低,但每一种制造技术受到端铣削条件的不同影响。低转速和高进给速率应优选从FDM打印的聚酰胺部件获得所需的表面质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machining Science and Technology
Machining Science and Technology 工程技术-材料科学:综合
CiteScore
5.70
自引率
3.70%
发文量
18
审稿时长
6 months
期刊介绍: Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials. Topics covered include: -machining performance of all materials, including lightweight materials- coated and special cutting tools: design and machining performance evaluation- predictive models for machining performance and optimization, including machining dynamics- measurement and analysis of machined surfaces- sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes precision and micro/nano machining- design and implementation of in-process sensors for monitoring and control of machining performance- surface integrity in machining processes, including detection and characterization of machining damage- new and advanced abrasive machining processes: design and performance analysis- cutting fluids and special coolants/lubricants- nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining
期刊最新文献
Investigation on the machining characteristics of AZ91 magnesium alloy using uncoated and CVD-diamond coated WC-Co inserts Combination of minimum quantity lubrication (MQL) with solid lubricant (SL): challenges, predictions and implications for sustainability Novel insights into conventional machining of metal additive manufactured components: a comprehensive review Numerical modeling of heat flux in ultrasonic-assisted grinding of difficult-to-cut materials with a pressurized lubrication system The performance of grooved turning tools under distinct cooling environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1