{"title":"Toward real-time terahertz imaging","authors":"H. Guerboukha, K. Nallappan, M. Skorobogatiy","doi":"10.1364/AOP.10.000843","DOIUrl":null,"url":null,"abstract":"Terahertz (THz) science and technology have greatly progressed over the past two decades to a point where the THz region of the electromagnetic spectrum is now a mature research area with many fundamental and practical applications. Furthermore, THz imaging is positioned to play a key role in many industrial applications, as THz technology is steadily shifting from university-grade instrumentation to commercial systems. In this context, the objective of this review is to discuss recent advances in THz imaging with an emphasis on the modalities that could enable real-time high-resolution imaging. To this end, we first discuss several key imaging modalities developed over the years: THz transmission, reflection, and conductivity imaging; THz pulsed imaging; THz computed tomography; and THz near-field imaging. Then, we discuss several enabling technologies for real-time THz imaging within the time-domain spectroscopy paradigm: fast optical delay lines, photoconductive antenna arrays, and electro-optic sampling with cameras. Next, we discuss the advances in THz cameras, particularly THz thermal cameras and THz field-effect transistor cameras. Finally, we overview the most recent techniques that enable fast THz imaging with single-pixel detectors: mechanical beam-steering, compressive sensing, spectral encoding, and fast Fourier optics. We believe that this critical and comprehensive review of enabling hardware, instrumentation, algorithms, and potential applications in real-time high-resolution THz imaging can serve a diverse community of fundamental and applied scientists.","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":" ","pages":""},"PeriodicalIF":25.2000,"publicationDate":"2018-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"233","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Optics and Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/AOP.10.000843","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 233
Abstract
Terahertz (THz) science and technology have greatly progressed over the past two decades to a point where the THz region of the electromagnetic spectrum is now a mature research area with many fundamental and practical applications. Furthermore, THz imaging is positioned to play a key role in many industrial applications, as THz technology is steadily shifting from university-grade instrumentation to commercial systems. In this context, the objective of this review is to discuss recent advances in THz imaging with an emphasis on the modalities that could enable real-time high-resolution imaging. To this end, we first discuss several key imaging modalities developed over the years: THz transmission, reflection, and conductivity imaging; THz pulsed imaging; THz computed tomography; and THz near-field imaging. Then, we discuss several enabling technologies for real-time THz imaging within the time-domain spectroscopy paradigm: fast optical delay lines, photoconductive antenna arrays, and electro-optic sampling with cameras. Next, we discuss the advances in THz cameras, particularly THz thermal cameras and THz field-effect transistor cameras. Finally, we overview the most recent techniques that enable fast THz imaging with single-pixel detectors: mechanical beam-steering, compressive sensing, spectral encoding, and fast Fourier optics. We believe that this critical and comprehensive review of enabling hardware, instrumentation, algorithms, and potential applications in real-time high-resolution THz imaging can serve a diverse community of fundamental and applied scientists.
期刊介绍:
Advances in Optics and Photonics (AOP) is an all-electronic journal that publishes comprehensive review articles and multimedia tutorials. It is suitable for students, researchers, faculty, business professionals, and engineers interested in optics and photonics. The content of the journal covers advancements in these fields, ranging from fundamental science to engineering applications.
The journal aims to capture the most significant developments in optics and photonics. It achieves this through long review articles and comprehensive tutorials written by prominent and respected authors who are at the forefront of their fields.
The journal goes beyond traditional text-based articles by enhancing the content with multimedia elements, such as animation and video. This multimedia approach helps to enhance the understanding and visualization of complex concepts.
AOP offers dedicated article preparation and peer-review support to assist authors throughout the publication process. This support ensures that the articles meet the journal's standards and are well-received by readers.
Additionally, AOP welcomes comments on published review articles, encouraging further discussions and insights from the scientific community.
In summary, Advances in Optics and Photonics is a comprehensive journal that provides authoritative and accessible content on advancements in optics and photonics. With its diverse range of articles, multimedia enhancements, and dedicated support, AOP serves as a valuable resource for professionals and researchers in these fields.