A maximum likelihood approach for asymmetric non-normal data using a transformational measurement model

IF 1.3 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Frontiers in Applied Mathematics and Statistics Pub Date : 2023-03-28 DOI:10.3389/fams.2023.1095769
K. Schweizer, C. DiStefano, B. French
{"title":"A maximum likelihood approach for asymmetric non-normal data using a transformational measurement model","authors":"K. Schweizer, C. DiStefano, B. French","doi":"10.3389/fams.2023.1095769","DOIUrl":null,"url":null,"abstract":"A transformational measurement model for structural equation modeling (SEM) of asymmetric non-normal data is proposed. This measurement model aligns with the expectation-maximization (EM) algorithm of the maximum likelihood estimation (MLE) method, creating adaptability to data that deviate from normality. Distinctive properties of the connection of the measurement model and EM algorithm are maintenance of the normality assumption, which is at the core of EM algorithm, and applicability to asymmetric non-normality of observed data mediated by distortion coefficients. An evaluation using a mixture of normal and severely asymmetric non-normal data analyzed by MLE for asymmetric non-normal data (MLE for ASN) demonstrated efficiency of the model. Comparisons with robust DWLS and WLS yielded better fit results under MLE for ASN estimation.","PeriodicalId":36662,"journal":{"name":"Frontiers in Applied Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fams.2023.1095769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

A transformational measurement model for structural equation modeling (SEM) of asymmetric non-normal data is proposed. This measurement model aligns with the expectation-maximization (EM) algorithm of the maximum likelihood estimation (MLE) method, creating adaptability to data that deviate from normality. Distinctive properties of the connection of the measurement model and EM algorithm are maintenance of the normality assumption, which is at the core of EM algorithm, and applicability to asymmetric non-normality of observed data mediated by distortion coefficients. An evaluation using a mixture of normal and severely asymmetric non-normal data analyzed by MLE for asymmetric non-normal data (MLE for ASN) demonstrated efficiency of the model. Comparisons with robust DWLS and WLS yielded better fit results under MLE for ASN estimation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用转换测量模型的非对称非正态数据的最大似然方法
提出了一种非对称非正态数据结构方程建模的转换测量模型。该测量模型与最大似然估计(MLE)方法的期望最大化(EM)算法一致,创造了对偏离正态性的数据的适应性。测量模型和EM算法的连接的显著特性是保持正态性假设,这是EM算法的核心,以及适用于由失真系数介导的观测数据的不对称非正态性。MLE对非对称非正态数据(MLE for ASN)进行分析,使用正态和严重非正态的混合数据进行评估,证明了该模型的有效性。与鲁棒DWLS和WLS的比较在用于ASN估计的MLE下产生了更好的拟合结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Applied Mathematics and Statistics
Frontiers in Applied Mathematics and Statistics Mathematics-Statistics and Probability
CiteScore
1.90
自引率
7.10%
发文量
117
审稿时长
14 weeks
期刊最新文献
Third-degree B-spline collocation method for singularly perturbed time delay parabolic problem with two parameters Item response theory to discriminate COVID-19 knowledge and attitudes among university students Editorial: Justified modeling frameworks and novel interpretations of ecological and epidemiological systems Pneumonia and COVID-19 co-infection modeling with optimal control analysis Enhanced corn seed disease classification: leveraging MobileNetV2 with feature augmentation and transfer learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1