An experimental facility for detailed studies on energy absorbing components subjected to blast loading
IF 1.8 3区 材料科学Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTINGStrainPub Date : 2023-06-18DOI:10.1111/str.12452
Kristoffer A. Brekken, R. Kaufmann, V. Aune, M. Langseth, T. Børvik
{"title":"An experimental facility for detailed studies on energy absorbing components subjected to blast loading","authors":"Kristoffer A. Brekken, R. Kaufmann, V. Aune, M. Langseth, T. Børvik","doi":"10.1111/str.12452","DOIUrl":null,"url":null,"abstract":"Deformable components such as sandwich structures possess promising properties for use in protection systems. Detailed studies on energy absorption and fluid–structure interaction effects are necessary for the application of deformable sandwich structures in blast resistant design. In this paper, an existing shock tube facility has been extended with a transparent section to observe and measure fluid flow and the structural response of deformable components during transient dynamic loading. The extension was instrumented with pressure sensors and load cells to measure the pressure and force transmitted through the component during testing. The transparent design allows the use of optical measurement techniques. Here, high‐speed cameras were used both for digital image correlation and background‐oriented schlieren imaging. Tests with free‐standing plates and sandwich components were performed. A strong dependency was observed between the plate mass, and thus the velocity of the plates, and the pressure measured upstream and downstream of the components. The tests were simulated with a one‐dimensional numerical model for compressible shock flow with fluid–structure interaction. The numerical model accurately reproduced the shock flow and component displacements measured experimentally. Overall, the experimental set‐up presented in this study proved to be suitable for the detailed examination of deformable components subjected to airblast loading.","PeriodicalId":51176,"journal":{"name":"Strain","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strain","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/str.12452","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 1
Abstract
Deformable components such as sandwich structures possess promising properties for use in protection systems. Detailed studies on energy absorption and fluid–structure interaction effects are necessary for the application of deformable sandwich structures in blast resistant design. In this paper, an existing shock tube facility has been extended with a transparent section to observe and measure fluid flow and the structural response of deformable components during transient dynamic loading. The extension was instrumented with pressure sensors and load cells to measure the pressure and force transmitted through the component during testing. The transparent design allows the use of optical measurement techniques. Here, high‐speed cameras were used both for digital image correlation and background‐oriented schlieren imaging. Tests with free‐standing plates and sandwich components were performed. A strong dependency was observed between the plate mass, and thus the velocity of the plates, and the pressure measured upstream and downstream of the components. The tests were simulated with a one‐dimensional numerical model for compressible shock flow with fluid–structure interaction. The numerical model accurately reproduced the shock flow and component displacements measured experimentally. Overall, the experimental set‐up presented in this study proved to be suitable for the detailed examination of deformable components subjected to airblast loading.
期刊介绍:
Strain is an international journal that contains contributions from leading-edge research on the measurement of the mechanical behaviour of structures and systems. Strain only accepts contributions with sufficient novelty in the design, implementation, and/or validation of experimental methodologies to characterize materials, structures, and systems; i.e. contributions that are limited to the application of established methodologies are outside of the scope of the journal. The journal includes papers from all engineering disciplines that deal with material behaviour and degradation under load, structural design and measurement techniques. Although the thrust of the journal is experimental, numerical simulations and validation are included in the coverage.
Strain welcomes papers that deal with novel work in the following areas:
experimental techniques
non-destructive evaluation techniques
numerical analysis, simulation and validation
residual stress measurement techniques
design of composite structures and components
impact behaviour of materials and structures
signal and image processing
transducer and sensor design
structural health monitoring
biomechanics
extreme environment
micro- and nano-scale testing method.