M. Arifuzzaman, U. Gazder, Muhammad Saiful Islam, M. Skitmore
{"title":"BUDGET AND COST CONTINGENCY CART MODELS FOR POWER PLANT PROJECTS","authors":"M. Arifuzzaman, U. Gazder, Muhammad Saiful Islam, M. Skitmore","doi":"10.3846/jcem.2022.16944","DOIUrl":null,"url":null,"abstract":"Cost overruns are a ubiquitous feature of construction projects, and realistic budgeting at the development stage plays a significant role in their control. However, the application of existing models to budgeting for power plant projects is restricted by the limited amount of project-specific cost data available. This study overcomes this by using a Classification and Regression Tree (CART) approach involving mixed methods of website visits, document study, and expert opinion to predict the amount of project cost (PC) and cost contingency (CC) needed to cover probable cost increases by the use of models containing readily available project attributes and national economic parameters at the project development stage. The modeling process is demonstrated and tested with a case study involving 58 Bangladeshi power plant projects – producing average absolute errors ranging from 0.7% to 1.7% and enabling project cost, inflation rate, and GDP to be identified as significant factors affecting PC and CC modeling. The approach can be applied to predict the PC during preliminary budgeting and selecting a project type and location aligned to the country’s economic status and policy-making strategies, thus facilitating further investment decisions.","PeriodicalId":15524,"journal":{"name":"Journal of Civil Engineering and Management","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Civil Engineering and Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3846/jcem.2022.16944","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Cost overruns are a ubiquitous feature of construction projects, and realistic budgeting at the development stage plays a significant role in their control. However, the application of existing models to budgeting for power plant projects is restricted by the limited amount of project-specific cost data available. This study overcomes this by using a Classification and Regression Tree (CART) approach involving mixed methods of website visits, document study, and expert opinion to predict the amount of project cost (PC) and cost contingency (CC) needed to cover probable cost increases by the use of models containing readily available project attributes and national economic parameters at the project development stage. The modeling process is demonstrated and tested with a case study involving 58 Bangladeshi power plant projects – producing average absolute errors ranging from 0.7% to 1.7% and enabling project cost, inflation rate, and GDP to be identified as significant factors affecting PC and CC modeling. The approach can be applied to predict the PC during preliminary budgeting and selecting a project type and location aligned to the country’s economic status and policy-making strategies, thus facilitating further investment decisions.
期刊介绍:
The Journal of Civil Engineering and Management is a peer-reviewed journal that provides an international forum for the dissemination of the latest original research, achievements and developments. We publish for researchers, designers, users and manufacturers in the different fields of civil engineering and management.
The journal publishes original articles that present new information and reviews. Our objective is to provide essential information and new ideas to help improve civil engineering competency, efficiency and productivity in world markets.
The Journal of Civil Engineering and Management publishes articles in the following fields:
building materials and structures,
structural mechanics and physics,
geotechnical engineering,
road and bridge engineering,
urban engineering and economy,
constructions technology, economy and management,
information technologies in construction,
fire protection, thermoinsulation and renovation of buildings,
labour safety in construction.