Anomaly detection in a fleet of industrial assets with hierarchical statistical modeling

IF 2.4 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE DataCentric Engineering Pub Date : 2020-12-30 DOI:10.1017/dce.2020.19
M. Dhada, M. Girolami, A. Parlikad
{"title":"Anomaly detection in a fleet of industrial assets with hierarchical statistical modeling","authors":"M. Dhada, M. Girolami, A. Parlikad","doi":"10.1017/dce.2020.19","DOIUrl":null,"url":null,"abstract":"Abstract Anomaly detection in asset condition data is critical for reliable industrial asset operations. But statistical anomaly classifiers require certain amount of normal operations training data before acceptable accuracy can be achieved. The necessary training data are often not available in the early periods of assets operations. This problem is addressed in this paper using a hierarchical model for the asset fleet that systematically identifies similar assets, and enables collaborative learning within the clusters of similar assets. The general behavior of the similar assets are represented using higher level models, from which the parameters are sampled describing the individual asset operations. Hierarchical models enable the individuals from a population, comprising of statistically coherent subpopulations, to collaboratively learn from one another. Results obtained with the hierarchical model show a marked improvement in anomaly detection for assets having low amount of data, compared to independent modeling or having a model common to the entire fleet.","PeriodicalId":34169,"journal":{"name":"DataCentric Engineering","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/dce.2020.19","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DataCentric Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/dce.2020.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract Anomaly detection in asset condition data is critical for reliable industrial asset operations. But statistical anomaly classifiers require certain amount of normal operations training data before acceptable accuracy can be achieved. The necessary training data are often not available in the early periods of assets operations. This problem is addressed in this paper using a hierarchical model for the asset fleet that systematically identifies similar assets, and enables collaborative learning within the clusters of similar assets. The general behavior of the similar assets are represented using higher level models, from which the parameters are sampled describing the individual asset operations. Hierarchical models enable the individuals from a population, comprising of statistically coherent subpopulations, to collaboratively learn from one another. Results obtained with the hierarchical model show a marked improvement in anomaly detection for assets having low amount of data, compared to independent modeling or having a model common to the entire fleet.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分层统计建模的工业资产异常检测
资产状态数据异常检测是工业资产可靠运行的关键。但是统计异常分类器需要一定数量的正常操作训练数据才能达到可接受的准确率。在资产业务的初期,往往没有必要的训练数据。在本文中,我们使用了一个系统地识别相似资产的资产群的层次模型来解决这个问题,并在相似资产的集群中实现协作学习。类似资产的一般行为使用更高层次的模型来表示,从这些模型中采样参数来描述单个资产操作。分层模型使群体中的个体(由统计上一致的子群体组成)能够相互协作学习。与独立建模或整个船队通用模型相比,使用分层模型获得的结果显示,对于数据量较少的资产,异常检测有显着改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
DataCentric Engineering
DataCentric Engineering Engineering-General Engineering
CiteScore
5.60
自引率
0.00%
发文量
26
审稿时长
12 weeks
期刊最新文献
Semantic 3D city interfaces—Intelligent interactions on dynamic geospatial knowledge graphs Optical network physical layer parameter optimization for digital backpropagation using Gaussian processes Finite element model updating with quantified uncertainties using point cloud data Evaluating probabilistic forecasts for maritime engineering operations Bottom-up forecasting: Applications and limitations in load forecasting using smart-meter data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1