Mapping volumetric soil moisture in the Vietnamese Red River Delta using Landsat 8 images

IF 1 4区 地球科学 Q4 GEOGRAPHY, PHYSICAL Journal of Spatial Science Pub Date : 2022-02-08 DOI:10.1080/14498596.2022.2034130
Huu Loc Ho, Hai Son Vu, D. Tran, Edward Park, An Giang
{"title":"Mapping volumetric soil moisture in the Vietnamese Red River Delta using Landsat 8 images","authors":"Huu Loc Ho, Hai Son Vu, D. Tran, Edward Park, An Giang","doi":"10.1080/14498596.2022.2034130","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study estimates the surface soil moisture content in a case study situated in the Vietnamese Red River Delta, using the Landsat 8 satellite images. The trapezoidal relationship between land surface temperature and vegetation index was used to obtain soil wetness indexes. A split-window algorithm was developed to overcome the missing of atmospheric data. The method was validated with ground truth across different land covers. The RMSE between the calculated and measured SMC ranges between 0.556 and 0.971 and varies across different types of land covers. The method is important to monitor SMC across large areas with limited surveyed data.","PeriodicalId":50045,"journal":{"name":"Journal of Spatial Science","volume":"68 1","pages":"469 - 485"},"PeriodicalIF":1.0000,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spatial Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/14498596.2022.2034130","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT This study estimates the surface soil moisture content in a case study situated in the Vietnamese Red River Delta, using the Landsat 8 satellite images. The trapezoidal relationship between land surface temperature and vegetation index was used to obtain soil wetness indexes. A split-window algorithm was developed to overcome the missing of atmospheric data. The method was validated with ground truth across different land covers. The RMSE between the calculated and measured SMC ranges between 0.556 and 0.971 and varies across different types of land covers. The method is important to monitor SMC across large areas with limited surveyed data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用Landsat 8图像绘制越南红河三角洲的体积土壤湿度
本研究利用Landsat 8卫星图像估算了越南红河三角洲的表层土壤水分含量。利用地表温度与植被指数之间的梯形关系获得土壤湿度指数。为了克服大气数据的缺失,提出了一种分窗算法。该方法通过不同土地覆盖的地面真实值进行了验证。计算值与实测值的均方根误差(RMSE)在0.556 ~ 0.971之间,不同土地覆盖类型的均方根误差存在差异。该方法对于在有限的调查数据下监测大面积SMC具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Spatial Science
Journal of Spatial Science 地学-地质学
CiteScore
5.00
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Journal of Spatial Science publishes papers broadly across the spatial sciences including such areas as cartography, geodesy, geographic information science, hydrography, digital image analysis and photogrammetry, remote sensing, surveying and related areas. Two types of papers are published by he journal: Research Papers and Professional Papers. Research Papers (including reviews) are peer-reviewed and must meet a minimum standard of making a contribution to the knowledge base of an area of the spatial sciences. This can be achieved through the empirical or theoretical contribution to knowledge that produces significant new outcomes. It is anticipated that Professional Papers will be written by industry practitioners. Professional Papers describe innovative aspects of professional practise and applications that advance the development of the spatial industry.
期刊最新文献
Analysis of vegetation influence on building shadow extraction in remote sensing imagery using deep convolutional neural networks A novel approach to coral species classification using deep learning and unsupervised feature extraction Land cover classification in high-resolution remote sensing: using Swin Transformer deep learning with texture features A change detection algorithm for the SAR images based on DWT and DE optimization Predicting land use and land cover change dynamics in the eThekwini Municipality: a machine learning approach with Landsat imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1