Ara Bae, Ki‑mu Yoon, Jaehong Jung, Bokyung Chung, Wooil Kim
{"title":"I-vector similarity based speech segmentation for interested speaker to speaker diarization system","authors":"Ara Bae, Ki‑mu Yoon, Jaehong Jung, Bokyung Chung, Wooil Kim","doi":"10.7776/ASK.2020.39.5.461","DOIUrl":null,"url":null,"abstract":"In noisy and multi-speaker environments, the performance of speech recognition is unavoidably lower than in a clean environment. To improve speech recognition, in this paper, the signal of the speaker of interest is extracted from the mixed speech signals with multiple speakers. The VoiceFilter model is used to effectively separate overlapped speech signals. In this work, clustering by Probabilistic Linear Discriminant Analysis (PLDA) similarity score was employed to detect the speech signal of the interested speaker, which is used as the reference speaker to VoiceFilter-based separation. Therefore, by utilizing the speaker feature extracted from the detected speech by the proposed clustering method, this paper propose a speaker diarization system using only the mixed speech without an explicit reference speaker signal. We use phone-dataset consisting of two speakers to evaluate the performance of the speaker diarization system. Source to Distortion Ratio (SDR) of the operator (Rx) speech and customer speech (Tx) are 5.22 dB and –5.22 dB respectively before separation, and the results of the proposed separation system show 11.26 dB and 8.53 dB respectively.","PeriodicalId":42689,"journal":{"name":"Journal of the Acoustical Society of Korea","volume":"39 1","pages":"461-467"},"PeriodicalIF":0.2000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of Korea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7776/ASK.2020.39.5.461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1
Abstract
In noisy and multi-speaker environments, the performance of speech recognition is unavoidably lower than in a clean environment. To improve speech recognition, in this paper, the signal of the speaker of interest is extracted from the mixed speech signals with multiple speakers. The VoiceFilter model is used to effectively separate overlapped speech signals. In this work, clustering by Probabilistic Linear Discriminant Analysis (PLDA) similarity score was employed to detect the speech signal of the interested speaker, which is used as the reference speaker to VoiceFilter-based separation. Therefore, by utilizing the speaker feature extracted from the detected speech by the proposed clustering method, this paper propose a speaker diarization system using only the mixed speech without an explicit reference speaker signal. We use phone-dataset consisting of two speakers to evaluate the performance of the speaker diarization system. Source to Distortion Ratio (SDR) of the operator (Rx) speech and customer speech (Tx) are 5.22 dB and –5.22 dB respectively before separation, and the results of the proposed separation system show 11.26 dB and 8.53 dB respectively.