{"title":"Prediction and validation of survival rate of metachronous second primary lung cancer patients using machine learning classifiers","authors":"P. Ramesh, Shanthi Veerappapillai","doi":"10.1080/23080477.2023.2194765","DOIUrl":null,"url":null,"abstract":"ABSTRACT Machine learning (ML) has been applied recently to develop prognostic classification models that can be used in individual cancer patients to forecast outcomes. Here, four different ML algorithms were built to predict survival rate of lung cancer patients using 1600 metadata records. Of note, the generated models were validated using test set and external validation data set consisting of 400 patient records each together with 10-fold cross-validation technique. The extratree classifier algorithm was employed to identify the influential descriptors for patients survival after incidence of metachronous second primary lung cancer. The models were assessed using five different performance metrices. The results from our study highlight that logistic regression model with all features and important features achieved an accuracy of 94% and 96%, respectively, for stratifying the survival status of lung cancer patients. On the other hand, logistic regression also outperformed external validation with an accuracy of 85%. Indeed, the results from our study will provide meaningful insights for the treatment and management of large community of lung cancer patients.","PeriodicalId":53436,"journal":{"name":"Smart Science","volume":"11 1","pages":"395 - 407"},"PeriodicalIF":2.4000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23080477.2023.2194765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Machine learning (ML) has been applied recently to develop prognostic classification models that can be used in individual cancer patients to forecast outcomes. Here, four different ML algorithms were built to predict survival rate of lung cancer patients using 1600 metadata records. Of note, the generated models were validated using test set and external validation data set consisting of 400 patient records each together with 10-fold cross-validation technique. The extratree classifier algorithm was employed to identify the influential descriptors for patients survival after incidence of metachronous second primary lung cancer. The models were assessed using five different performance metrices. The results from our study highlight that logistic regression model with all features and important features achieved an accuracy of 94% and 96%, respectively, for stratifying the survival status of lung cancer patients. On the other hand, logistic regression also outperformed external validation with an accuracy of 85%. Indeed, the results from our study will provide meaningful insights for the treatment and management of large community of lung cancer patients.
期刊介绍:
Smart Science (ISSN 2308-0477) is an international, peer-reviewed journal that publishes significant original scientific researches, and reviews and analyses of current research and science policy. We welcome submissions of high quality papers from all fields of science and from any source. Articles of an interdisciplinary nature are particularly welcomed. Smart Science aims to be among the top multidisciplinary journals covering a broad spectrum of smart topics in the fields of materials science, chemistry, physics, engineering, medicine, and biology. Smart Science is currently focusing on the topics of Smart Manufacturing (CPS, IoT and AI) for Industry 4.0, Smart Energy and Smart Chemistry and Materials. Other specific research areas covered by the journal include, but are not limited to: 1. Smart Science in the Future 2. Smart Manufacturing: -Cyber-Physical System (CPS) -Internet of Things (IoT) and Internet of Brain (IoB) -Artificial Intelligence -Smart Computing -Smart Design/Machine -Smart Sensing -Smart Information and Networks 3. Smart Energy and Thermal/Fluidic Science 4. Smart Chemistry and Materials