Analysis of novel refrigeration systems performance with and without nanoparticles

Hicham Machmouchi, R. Pillai
{"title":"Analysis of novel refrigeration systems performance with and without nanoparticles","authors":"Hicham Machmouchi, R. Pillai","doi":"10.2495/eq-v6-n2-306-316","DOIUrl":null,"url":null,"abstract":"Due to their high rate of heat transfer and better thermo-physical properties, the application of nanoparticles in cooling systems results in better enhancement, improved reliability and efficiency of refrigeration and air conditioning systems, and hence, they are widely used in domestic and industrial sectors. It has been found that the major contribution to global warming potential (GWP) and depletion of ozone layer (ODP) is due to the over usage of conventional refrigerants; thus, the utilization of nanoparticles in refrigeration and air conditioning systems is highly recommended. The application of nanorefrigerants not only increases the thermal conductivity and heat transfer characteristics but also improves the coefficient of performance (COP) effectively, leading to energy savings. This article comprises the theoretical analysis of R134a-Al2O3, R134a-ZnO, R134a-TiO2 and R134a-CuO mixtures as replacements of pure R134a refrigerant in vapour compression refrigerants (VCRs). For comparison, the COP and refrigeration effect (RE) of the system with and without the addition of nanoparticles are determined from reported observations. It is concluded that the COP of a refrigeration system with added nanoadditives in refrigerant fluid is higher than that of systems running with pure refrigerant fluid. Around 38% increase in COP has been recorded in this study. Moreover, CuO nanoparticles showed high value of COP when blended with R134a compared to other nanoparticles. The COP of the refrigeration systems varies with the type of refrigerants used in the system.","PeriodicalId":52236,"journal":{"name":"International Journal of Energy Production and Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Production and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/eq-v6-n2-306-316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Due to their high rate of heat transfer and better thermo-physical properties, the application of nanoparticles in cooling systems results in better enhancement, improved reliability and efficiency of refrigeration and air conditioning systems, and hence, they are widely used in domestic and industrial sectors. It has been found that the major contribution to global warming potential (GWP) and depletion of ozone layer (ODP) is due to the over usage of conventional refrigerants; thus, the utilization of nanoparticles in refrigeration and air conditioning systems is highly recommended. The application of nanorefrigerants not only increases the thermal conductivity and heat transfer characteristics but also improves the coefficient of performance (COP) effectively, leading to energy savings. This article comprises the theoretical analysis of R134a-Al2O3, R134a-ZnO, R134a-TiO2 and R134a-CuO mixtures as replacements of pure R134a refrigerant in vapour compression refrigerants (VCRs). For comparison, the COP and refrigeration effect (RE) of the system with and without the addition of nanoparticles are determined from reported observations. It is concluded that the COP of a refrigeration system with added nanoadditives in refrigerant fluid is higher than that of systems running with pure refrigerant fluid. Around 38% increase in COP has been recorded in this study. Moreover, CuO nanoparticles showed high value of COP when blended with R134a compared to other nanoparticles. The COP of the refrigeration systems varies with the type of refrigerants used in the system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有纳米颗粒和无纳米颗粒的新型制冷系统性能分析
由于纳米颗粒具有较高的传热速率和较好的热物理性能,因此在制冷系统中的应用可以更好地增强制冷和空调系统的可靠性和效率,因此在家庭和工业部门得到广泛应用。研究发现,全球变暖潜能值(GWP)和臭氧层损耗(ODP)的主要原因是常规制冷剂的过度使用;因此,纳米颗粒在制冷和空调系统中的应用是非常值得推荐的。纳米制冷剂的应用不仅增加了导热性和传热特性,而且有效地提高了性能系数(COP),从而达到节能的目的。本文对R134a- al2o3、R134a- zno、R134a- tio2和R134a- cuo混合物替代纯R134a制冷剂在蒸汽压缩制冷剂(vcr)中的应用进行了理论分析。为了进行比较,根据已有的观测结果确定了添加纳米粒子和不添加纳米粒子时系统的COP和制冷效果(RE)。结果表明,在冷媒液中添加纳米添加剂的制冷系统的COP高于纯冷媒液的制冷系统。在这项研究中,COP增加了约38%。与其他纳米粒子相比,CuO纳米粒子与R134a共混时表现出较高的COP值。制冷系统的COP随系统中所用制冷剂的类型而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Energy Production and Management
International Journal of Energy Production and Management Social Sciences-Sociology and Political Science
CiteScore
2.20
自引率
0.00%
发文量
24
审稿时长
26 weeks
期刊最新文献
Evaluation of 15-m-height Solar Chimney Model Integrated with TES Under Tropical Climate Lumped Capacitance Thermal Modelling Approaches for Different Cylindrical Batteries Performance Evaluation of Wood Pellets Derived from Biomass Waste as a Sustainable Energy Source Emission and Performance in a Diesel Engine Operating on Diesel-Biodiesel-Butanol Blends Derived from Waste Cooking Oil Design and Simulation of a Renewable Energy-Based Smart Grid for Ma'an City, Jordan: A Feasibility Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1