GEOCHEMICAL EVIDENCE FOR LOCAL VARIABILITY IN REDOX AND DEPOSITIONAL CONDITIONS IN A DEEP-WATER BONARELLI EQUIVALENT SECTION FROM SOUTHERN TETHYS (FONTANA VALLONETO SECTION, SOUTHERN ITALY)
Greta Bonacina, A. Sanfilippo, Simone Zana, A. Bosino, E. P. Massara, P. Viaggi, L. Sabato, S. Gallicchio, P. Scotti
{"title":"GEOCHEMICAL EVIDENCE FOR LOCAL VARIABILITY IN REDOX AND DEPOSITIONAL CONDITIONS IN A DEEP-WATER BONARELLI EQUIVALENT SECTION FROM SOUTHERN TETHYS (FONTANA VALLONETO SECTION, SOUTHERN ITALY)","authors":"Greta Bonacina, A. Sanfilippo, Simone Zana, A. Bosino, E. P. Massara, P. Viaggi, L. Sabato, S. Gallicchio, P. Scotti","doi":"10.4454/OFIOLITI.V46I1.537","DOIUrl":null,"url":null,"abstract":"Identifying the depositional redox conditions is useful to evaluate the interplay between climate changes, biological feedbacks and de-oxygenation processes in the oceans during the Oceanic Anoxic Events (OAEs). Here, we focus on the about 56 m-thick Albian-Turonian Fontana Valloneto stratigraphic section cropping out in Southern Italy (Potenza, Basilicata), belonging to the “Flysch Rosso” Formation, and containing an equivalent of the Bonarelli Horizon (globally called OAE2 which occurred at~ 94 Ma). Inorganic geochemical compositions and Total Organic Carbon contents obtained from this section are here used to assess depositional environment and redox conditions. The paucity of carbonates within the entire sequence and a gradual decrease in Y, Zr and Al contents along the section suggest a deep depositional environment (below the Calcite Compensation Depth) and an overall decrease in the terrigenous supply. Samples within the Bonarelli Horizon (BH-e) show highly variable TOC contents (~ 0 to ~ 30 wt%) that, mirrored by variations in redox sensitive and nutrient-related elements (e.g. V, Mo and U) and Mn, suggest variation of the seawater primary productivity associated to changes of the local redox conditions between suboxic to strongly euxinic. We infer that during OAE2 the accumulation of the black shales was associated to high Organic Matter (OM) productivity, high biogenic silica production and fine-grained sedimentation (mainly aeolian dust and illite) in a period of “sluggish” oceanic circulation and stagnant conditions. These periods were alternated by moments of more active oceanic circulation and enhanced runoff, leading to the local deposition of radiolarites with very low TOC contents. Finally, a comparison with other section from the proto-Atlantic Ocean and the Mesozoic Tethys sustains the idea that the drawdown of redox-sensitive elements (V, Mo and U) was a global process during the deposition of OAE2, providing a link between the environmental changes detected in our section with the global perturbations developed during this oceanic anoxic event.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.4454/OFIOLITI.V46I1.537","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Identifying the depositional redox conditions is useful to evaluate the interplay between climate changes, biological feedbacks and de-oxygenation processes in the oceans during the Oceanic Anoxic Events (OAEs). Here, we focus on the about 56 m-thick Albian-Turonian Fontana Valloneto stratigraphic section cropping out in Southern Italy (Potenza, Basilicata), belonging to the “Flysch Rosso” Formation, and containing an equivalent of the Bonarelli Horizon (globally called OAE2 which occurred at~ 94 Ma). Inorganic geochemical compositions and Total Organic Carbon contents obtained from this section are here used to assess depositional environment and redox conditions. The paucity of carbonates within the entire sequence and a gradual decrease in Y, Zr and Al contents along the section suggest a deep depositional environment (below the Calcite Compensation Depth) and an overall decrease in the terrigenous supply. Samples within the Bonarelli Horizon (BH-e) show highly variable TOC contents (~ 0 to ~ 30 wt%) that, mirrored by variations in redox sensitive and nutrient-related elements (e.g. V, Mo and U) and Mn, suggest variation of the seawater primary productivity associated to changes of the local redox conditions between suboxic to strongly euxinic. We infer that during OAE2 the accumulation of the black shales was associated to high Organic Matter (OM) productivity, high biogenic silica production and fine-grained sedimentation (mainly aeolian dust and illite) in a period of “sluggish” oceanic circulation and stagnant conditions. These periods were alternated by moments of more active oceanic circulation and enhanced runoff, leading to the local deposition of radiolarites with very low TOC contents. Finally, a comparison with other section from the proto-Atlantic Ocean and the Mesozoic Tethys sustains the idea that the drawdown of redox-sensitive elements (V, Mo and U) was a global process during the deposition of OAE2, providing a link between the environmental changes detected in our section with the global perturbations developed during this oceanic anoxic event.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.