{"title":"Gravitational energy problem and the energy of photons","authors":"J. B. Formiga, J. Duarte","doi":"10.1103/PhysRevD.108.044043","DOIUrl":null,"url":null,"abstract":"The lack of a well-established solution for the gravitational energy problem might be one of the reasons why a clear road to quantum gravity does not exist. In this paper, the gravitational energy is studied in detail with the help of the teleparallel approach that is equivalent to general relativity. This approach is applied to the solutions of the Einstein-Maxwell equations known as $pp$-wave spacetimes. The quantization of the electromagnetic energy is assumed and it is shown that the proper area measured by an observer must satisfy an equation for consistency. The meaning of this equation is discussed and it is argued that the spacetime geometry should become discrete once all matter fields are quantized, including the constituents of the frame; it is shown that for a harmonic oscillation with wavelength $\\lambda_0$, the area and the volume take the form $A=4(N+1/2)l_p^2/n$ and $V=2(N+1/2)l_p^2\\lambda_0$, where $N$ is the number of photons, $l_p$ the Planck length, and $n$ is a natural number associated with the length along the $z$-axis of a box with cross-sectional area $A$. The localization of the gravitational energy problem is also discussed. The stress-energy tensors for the gravitational and electromagnetic fields are decomposed into energy density, pressures and heat flow. The resultant expressions are consistent with the properties of the fields, thus indicating that one can have a well-defined energy density for the gravitational field regardless of the principle of equivalence.","PeriodicalId":48711,"journal":{"name":"Physical Review D","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevD.108.044043","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The lack of a well-established solution for the gravitational energy problem might be one of the reasons why a clear road to quantum gravity does not exist. In this paper, the gravitational energy is studied in detail with the help of the teleparallel approach that is equivalent to general relativity. This approach is applied to the solutions of the Einstein-Maxwell equations known as $pp$-wave spacetimes. The quantization of the electromagnetic energy is assumed and it is shown that the proper area measured by an observer must satisfy an equation for consistency. The meaning of this equation is discussed and it is argued that the spacetime geometry should become discrete once all matter fields are quantized, including the constituents of the frame; it is shown that for a harmonic oscillation with wavelength $\lambda_0$, the area and the volume take the form $A=4(N+1/2)l_p^2/n$ and $V=2(N+1/2)l_p^2\lambda_0$, where $N$ is the number of photons, $l_p$ the Planck length, and $n$ is a natural number associated with the length along the $z$-axis of a box with cross-sectional area $A$. The localization of the gravitational energy problem is also discussed. The stress-energy tensors for the gravitational and electromagnetic fields are decomposed into energy density, pressures and heat flow. The resultant expressions are consistent with the properties of the fields, thus indicating that one can have a well-defined energy density for the gravitational field regardless of the principle of equivalence.
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.