Mass data processing and multidimensional database management based on deep learning

IF 1.1 Q3 COMPUTER SCIENCE, THEORY & METHODS Open Computer Science Pub Date : 2022-01-01 DOI:10.1515/comp-2022-0251
Haijie Shen, Y. Li, Xinzhi Tian, Xiaofan Chen, Caihong Li, Qian Bian, Zhenduo Wang, Weihua Wang
{"title":"Mass data processing and multidimensional database management based on deep learning","authors":"Haijie Shen, Y. Li, Xinzhi Tian, Xiaofan Chen, Caihong Li, Qian Bian, Zhenduo Wang, Weihua Wang","doi":"10.1515/comp-2022-0251","DOIUrl":null,"url":null,"abstract":"Abstract With the rapid development of the Internet of Things, the requirements for massive data processing technology are getting higher and higher. Traditional computer data processing capabilities can no longer deliver fast, simple, and efficient data analysis and processing for today’s massive data processing due to the real-time, massive, polymorphic, and heterogeneous characteristics of Internet of Things data. Mass heterogeneous data of different types of subsystems in the Internet of Things need to be processed and stored uniformly, so the mass data processing method is required to be able to integrate multiple different networks, multiple data sources, and heterogeneous mass data and be able to perform processing on these data. Therefore, this article proposes massive data processing and multidimensional database management based on deep learning to meet the needs of contemporary society for massive data processing. This article has deeply studied the basic technical methods of massive data processing, including MapReduce technology, parallel data technology, database technology based on distributed memory databases, and distributed real-time database technology based on cloud computing technology, and constructed a massive data fusion algorithm based on deep learning. The model and the multidimensional online analytical processing model of the multidimensional database based on deep learning analyze the performance, scalability, load balancing, data query, and other aspects of the multidimensional database based on deep learning. It is concluded that the accuracy of multidimensional database query data is as high as 100%, and the accuracy of the average data query time is only 0.0053 s, which is much lower than the general database query time.","PeriodicalId":43014,"journal":{"name":"Open Computer Science","volume":"12 1","pages":"300 - 313"},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/comp-2022-0251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract With the rapid development of the Internet of Things, the requirements for massive data processing technology are getting higher and higher. Traditional computer data processing capabilities can no longer deliver fast, simple, and efficient data analysis and processing for today’s massive data processing due to the real-time, massive, polymorphic, and heterogeneous characteristics of Internet of Things data. Mass heterogeneous data of different types of subsystems in the Internet of Things need to be processed and stored uniformly, so the mass data processing method is required to be able to integrate multiple different networks, multiple data sources, and heterogeneous mass data and be able to perform processing on these data. Therefore, this article proposes massive data processing and multidimensional database management based on deep learning to meet the needs of contemporary society for massive data processing. This article has deeply studied the basic technical methods of massive data processing, including MapReduce technology, parallel data technology, database technology based on distributed memory databases, and distributed real-time database technology based on cloud computing technology, and constructed a massive data fusion algorithm based on deep learning. The model and the multidimensional online analytical processing model of the multidimensional database based on deep learning analyze the performance, scalability, load balancing, data query, and other aspects of the multidimensional database based on deep learning. It is concluded that the accuracy of multidimensional database query data is as high as 100%, and the accuracy of the average data query time is only 0.0053 s, which is much lower than the general database query time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的海量数据处理和多维数据库管理
随着物联网的快速发展,对海量数据处理技术的要求越来越高。由于物联网数据的实时性、海量性、多态性、异构性等特点,传统的计算机数据处理能力已经无法为海量数据处理的今天提供快速、简单、高效的数据分析和处理。物联网中不同类型子系统的海量异构数据需要统一处理和存储,因此海量数据处理方法要求能够集成多个不同的网络、多个数据源、异构海量数据,并能够对这些数据进行处理。因此,本文提出基于深度学习的海量数据处理和多维数据库管理,以满足当代社会对海量数据处理的需求。本文深入研究了海量数据处理的基本技术方法,包括MapReduce技术、并行数据技术、基于分布式内存数据库的数据库技术、基于云计算技术的分布式实时数据库技术,构建了基于深度学习的海量数据融合算法。该模型和基于深度学习的多维数据库多维在线分析处理模型对基于深度学习的多维数据库的性能、可扩展性、负载均衡、数据查询等方面进行了分析。结果表明,多维数据库查询数据的准确率高达100%,平均数据查询时间的准确率仅为0.0053 s,远低于一般数据库查询时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Open Computer Science
Open Computer Science COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
4.00
自引率
0.00%
发文量
24
审稿时长
25 weeks
期刊最新文献
Artificial intelligence-based public safety data resource management in smart cities Application of fingerprint image fuzzy edge recognition algorithm in criminal technology Application of SSD network algorithm in panoramic video image vehicle detection system Data preprocessing impact on machine learning algorithm performance RFID supply chain data deconstruction method based on artificial intelligence technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1