Performance Health Index for Complex Cyber Infrastructures

IF 0.7 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Modeling and Performance Evaluation of Computing Systems Pub Date : 2021-09-03 DOI:10.1145/3538646
Sanjeev Sondur, K. Kant
{"title":"Performance Health Index for Complex Cyber Infrastructures","authors":"Sanjeev Sondur, K. Kant","doi":"10.1145/3538646","DOIUrl":null,"url":null,"abstract":"Most IT systems depend on a set of configuration variables (CVs), expressed as a name/value pair that collectively defines the resource allocation for the system. While the ill effects of misconfiguration or improper resource allocation are well-known, there are no effective a priori metrics to quantify the impact of the configuration on the desired system attributes such as performance, availability, etc. In this paper, we propose a Configuration Health Index (CHI) framework specifically attuned to the performance attribute to capture the influence of CVs on the performance aspects of the system. We show how CHI, which is defined as a configuration scoring system, can take advantage of the domain knowledge and the available (but rather limited) performance data to produce important insights into the configuration settings. We compare the CHI with both well-advertised segmented non-linear models and state-of-the-art data-driven models, and show that the CHI not only consistently provides better results but also avoids the dangers of a pure data drive approach which may predict incorrect behavior or eliminate some essential configuration variables from consideration.","PeriodicalId":56350,"journal":{"name":"ACM Transactions on Modeling and Performance Evaluation of Computing Systems","volume":"7 1","pages":"1 - 32"},"PeriodicalIF":0.7000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Modeling and Performance Evaluation of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3538646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

Most IT systems depend on a set of configuration variables (CVs), expressed as a name/value pair that collectively defines the resource allocation for the system. While the ill effects of misconfiguration or improper resource allocation are well-known, there are no effective a priori metrics to quantify the impact of the configuration on the desired system attributes such as performance, availability, etc. In this paper, we propose a Configuration Health Index (CHI) framework specifically attuned to the performance attribute to capture the influence of CVs on the performance aspects of the system. We show how CHI, which is defined as a configuration scoring system, can take advantage of the domain knowledge and the available (but rather limited) performance data to produce important insights into the configuration settings. We compare the CHI with both well-advertised segmented non-linear models and state-of-the-art data-driven models, and show that the CHI not only consistently provides better results but also avoids the dangers of a pure data drive approach which may predict incorrect behavior or eliminate some essential configuration variables from consideration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复杂网络基础设施的性能运行状况指数
大多数IT系统依赖于一组配置变量(CV),这些变量表示为名称/值对,共同定义系统的资源分配。虽然错误配置或不正确的资源分配的不良影响是众所周知的,但没有有效的先验度量来量化配置对所需系统属性(如性能、可用性等)的影响。在本文中,我们提出了一个专门针对性能属性的配置健康指数(CHI)框架,以捕捉CV对系统性能方面的影响。我们展示了被定义为配置评分系统的CHI如何利用领域知识和可用(但相当有限)的性能数据,对配置设置产生重要见解。我们将CHI与广为宣传的分段非线性模型和最先进的数据驱动模型进行了比较,并表明CHI不仅始终如一地提供了更好的结果,而且避免了纯数据驱动方法的危险,这种方法可能会预测不正确的行为或从考虑中消除一些重要的配置变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
9
期刊最新文献
Configuring and Coordinating End-to-End QoS for Emerging Storage Infrastructure An approximation method for a non-preemptive multiserver queue with quasi-Poisson arrivals From compositional Petri Net modeling to macro and micro simulation by means of Stochastic Simulation and Agent-Based models No-regret Caching via Online Mirror Descent Optimal Pricing in a Single Server System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1