Dalei Zhang, Xinwei Zhang, Enze Wei, Xiaohui Dou, Zonghao He
{"title":"Construction of superhydrophobic film on the titanium alloy welded joint and its corrosion resistance study","authors":"Dalei Zhang, Xinwei Zhang, Enze Wei, Xiaohui Dou, Zonghao He","doi":"10.1108/acmm-05-2023-2812","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis study aims to improve the corrosion resistance of TA2-welded joints by superhydrophobic surface modification using micro-arc oxidation technology and low surface energy substance modification.\n\n\nDesign/methodology/approach\nThe microstructure and chemical state of the superhydrophobic film layer were analyzed using scanning electron microscopy, energy dispersive X-ray spectroscopy, three-dimensional morphology, X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared absorption spectroscopy. The influence of the superhydrophobic film layer on the corrosion resistance of TA2-welded joints was investigated using classical electrochemical testing methods.\n\n\nFindings\nThe characterization results showed that the super hydrophobic TiO2 ceramic membrane was successfully constructed on the surface of the TA2-welded joint, and the construction of the super hydrophobic film greatly improved the corrosion resistance of the TA2-welded joint.\n\n\nOriginality/value\nThe superhydrophobic TiO2 ceramic membrane has excellent corrosion resistance. The micro nanostructure in the superhydrophobic film can intercept air to form an air layer to prevent the corrosion medium from contacting the surface, thus, improving the corrosion resistance of the sample.\n","PeriodicalId":8217,"journal":{"name":"Anti-corrosion Methods and Materials","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-corrosion Methods and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/acmm-05-2023-2812","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This study aims to improve the corrosion resistance of TA2-welded joints by superhydrophobic surface modification using micro-arc oxidation technology and low surface energy substance modification.
Design/methodology/approach
The microstructure and chemical state of the superhydrophobic film layer were analyzed using scanning electron microscopy, energy dispersive X-ray spectroscopy, three-dimensional morphology, X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared absorption spectroscopy. The influence of the superhydrophobic film layer on the corrosion resistance of TA2-welded joints was investigated using classical electrochemical testing methods.
Findings
The characterization results showed that the super hydrophobic TiO2 ceramic membrane was successfully constructed on the surface of the TA2-welded joint, and the construction of the super hydrophobic film greatly improved the corrosion resistance of the TA2-welded joint.
Originality/value
The superhydrophobic TiO2 ceramic membrane has excellent corrosion resistance. The micro nanostructure in the superhydrophobic film can intercept air to form an air layer to prevent the corrosion medium from contacting the surface, thus, improving the corrosion resistance of the sample.
期刊介绍:
Anti-Corrosion Methods and Materials publishes a broad coverage of the materials and techniques employed in corrosion prevention. Coverage is essentially of a practical nature and designed to be of material benefit to those working in the field. Proven applications are covered together with company news and new product information. Anti-Corrosion Methods and Materials now also includes research articles that reflect the most interesting and strategically important research and development activities from around the world.
Every year, industry pays a massive and rising cost for its corrosion problems. Research and development into new materials, processes and initiatives to combat this loss is increasing, and new findings are constantly coming to light which can help to beat corrosion problems throughout industry. This journal uniquely focuses on these exciting developments to make essential reading for anyone aiming to regain profits lost through corrosion difficulties.
• New methods, materials and software
• New developments in research and industry
• Stainless steels
• Protection of structural steelwork
• Industry update, conference news, dates and events
• Environmental issues
• Health & safety, including EC regulations
• Corrosion monitoring and plant health assessment
• The latest equipment and processes
• Corrosion cost and corrosion risk management.