Laura Mendoza-Cerezo, J. Rodríguez-Rego, Anabel Soriano-Carrera, Alfonso C. Marcos-Romero, A. Macías-García
{"title":"Fabrication and characterisation of bioglass and hydroxyapatite-filled scaffolds.","authors":"Laura Mendoza-Cerezo, J. Rodríguez-Rego, Anabel Soriano-Carrera, Alfonso C. Marcos-Romero, A. Macías-García","doi":"10.2139/ssrn.4388787","DOIUrl":null,"url":null,"abstract":"Tissue engineering is a continuously evolving field. One of the main lines of research in this field focuses on the replacement of bone defects with materials designed to interact with the cells of a living organism in order to provide the body with a structure on which new tissues can easily grow. Among the most commonly used materials are bioglasses, which are frequently used due to their versatility and good properties. This article discusses the results of the production of an injectable paste of Bioglass® 45S5 and hydroxyapatite on a 3D printed porous structure by additive manufacturing, using a thermoplastic (PLA). The results were evaluated in a specific application of the paste, so the mechanical and bioactive properties were studied to show the multiple possibilities of using this combination for its application in regenerative medicine and more specifically in bone implants.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"144 1","pages":"105937"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the mechanical behavior of biomedical materials","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.2139/ssrn.4388787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Tissue engineering is a continuously evolving field. One of the main lines of research in this field focuses on the replacement of bone defects with materials designed to interact with the cells of a living organism in order to provide the body with a structure on which new tissues can easily grow. Among the most commonly used materials are bioglasses, which are frequently used due to their versatility and good properties. This article discusses the results of the production of an injectable paste of Bioglass® 45S5 and hydroxyapatite on a 3D printed porous structure by additive manufacturing, using a thermoplastic (PLA). The results were evaluated in a specific application of the paste, so the mechanical and bioactive properties were studied to show the multiple possibilities of using this combination for its application in regenerative medicine and more specifically in bone implants.