J. Kozarik, J. Marek, A. Chvála, M. Minárik, K. Gasparek, M. Jagelka
{"title":"Development of a Device for On-Die Double-Pulse Testing and Measurement of Dynamic On-Resistance of GaN HEMTs","authors":"J. Kozarik, J. Marek, A. Chvála, M. Minárik, K. Gasparek, M. Jagelka","doi":"10.15598/aeee.v19i4.4136","DOIUrl":null,"url":null,"abstract":"On-die testing can accelerate development of semiconductor devices, but poses certain challenges related to high frequency and high current switching. This paper describes design and development of a tester for double-pulse switching test and measurement of dynamic on-state resistance of unpackaged High-ElectronMobility Transistors (GaN HEMTs). The tester is capable of switching an inductive load at drain-to-source voltage up to 400 V and drain current up to 10 A. Design challenges resulting from specific properties of GaN HEMTs and on-die measurement are explained, and solutions are proposed. Essential parts of the developed device are described, including low inductance gate-driver and measurement methods. Modified drain voltage clamping circuit for accurate on-state drain voltage measurement is described. The tester is constructed as a printed circuit board, integrated into a probe station. Voltage and current waveforms are measured with oscilloscope and used to calculate the on-resistance. Results of a reference measurement with commercially available packaged transistors are presented. Waveforms measured on experimental unpackaged normally-off GaN HEMT samples are also presented and discussed. The proposed tester device proved to be capable of performing the dynamic on-resistance measurement with satisfactory results.","PeriodicalId":7268,"journal":{"name":"Advances in Electrical and Electronic Engineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Electrical and Electronic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15598/aeee.v19i4.4136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
On-die testing can accelerate development of semiconductor devices, but poses certain challenges related to high frequency and high current switching. This paper describes design and development of a tester for double-pulse switching test and measurement of dynamic on-state resistance of unpackaged High-ElectronMobility Transistors (GaN HEMTs). The tester is capable of switching an inductive load at drain-to-source voltage up to 400 V and drain current up to 10 A. Design challenges resulting from specific properties of GaN HEMTs and on-die measurement are explained, and solutions are proposed. Essential parts of the developed device are described, including low inductance gate-driver and measurement methods. Modified drain voltage clamping circuit for accurate on-state drain voltage measurement is described. The tester is constructed as a printed circuit board, integrated into a probe station. Voltage and current waveforms are measured with oscilloscope and used to calculate the on-resistance. Results of a reference measurement with commercially available packaged transistors are presented. Waveforms measured on experimental unpackaged normally-off GaN HEMT samples are also presented and discussed. The proposed tester device proved to be capable of performing the dynamic on-resistance measurement with satisfactory results.