Cutting Force Prediction of Ti6Al4V using a Machine Learning Model of SPH Orthogonal Cutting Process Simulations

Q2 Engineering Journal of Machine Engineering Pub Date : 2022-03-24 DOI:10.36897/jme/147201
H. Klippel, Eduardo Gonzalez Sanchez, Margolis Isabel, M. Röthlin, M. Afrasiabi, Kuffa Michal, K. Wegener
{"title":"Cutting Force Prediction of Ti6Al4V using a Machine Learning Model of SPH Orthogonal Cutting Process Simulations","authors":"H. Klippel, Eduardo Gonzalez Sanchez, Margolis Isabel, M. Röthlin, M. Afrasiabi, Kuffa Michal, K. Wegener","doi":"10.36897/jme/147201","DOIUrl":null,"url":null,"abstract":"The prediction of machining processes is a challenging task and usually requires a large experimental basis. These experiments are time-consuming and require manufacturing and testing of different tool geometries at various process conditions to find optimum machining settings. In this paper, a machine learning model of the orthogonal cutting process of Ti6Al4V is proposed to predict the cutting and feed forces for a wide range of process conditions with regards to rake angle, clearance angle, cutting edge radius, feed and cutting speed. The model uses training data generated by virtual experiments, which are conducted using physical based simulations of the orthogonal cutting process with the smoothed particle hydrodynamics (SPH). The ML training set is composed of input parameters, and output process forces from 2500 instances of GPU accelerated SPH simulations. The resulting model provides fast process force predictions and can consider the cutter geometry in comparison to classical analytical approaches.","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36897/jme/147201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

Abstract

The prediction of machining processes is a challenging task and usually requires a large experimental basis. These experiments are time-consuming and require manufacturing and testing of different tool geometries at various process conditions to find optimum machining settings. In this paper, a machine learning model of the orthogonal cutting process of Ti6Al4V is proposed to predict the cutting and feed forces for a wide range of process conditions with regards to rake angle, clearance angle, cutting edge radius, feed and cutting speed. The model uses training data generated by virtual experiments, which are conducted using physical based simulations of the orthogonal cutting process with the smoothed particle hydrodynamics (SPH). The ML training set is composed of input parameters, and output process forces from 2500 instances of GPU accelerated SPH simulations. The resulting model provides fast process force predictions and can consider the cutter geometry in comparison to classical analytical approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用SPH正交切削过程模拟的机器学习模型预测Ti6Al4V的切削力
机械加工过程的预测是一项具有挑战性的任务,通常需要大量的实验基础。这些实验是耗时的,并且需要在各种工艺条件下制造和测试不同的工具几何形状,以找到最佳的加工设置。本文提出了Ti6Al4V正交切削过程的机器学习模型,用于预测前角、后角、切削刃半径、进给和切削速度等多种工艺条件下的切削力和进给力。该模型使用虚拟实验生成的训练数据,这些实验是使用基于物理的平滑粒子流体动力学(SPH)模拟正交切削过程进行的。ML训练集由2500个GPU加速SPH模拟实例的输入参数和输出过程力组成。所得到的模型提供了快速的过程力预测,并且与经典的分析方法相比,可以考虑刀具的几何形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Machine Engineering
Journal of Machine Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
2.70
自引率
0.00%
发文量
36
审稿时长
25 weeks
期刊介绍: ournal of Machine Engineering is a scientific journal devoted to current issues of design and manufacturing - aided by innovative computer techniques and state-of-the-art computer systems - of products which meet the demands of the current global market. It favours solutions harmonizing with the up-to-date manufacturing strategies, the quality requirements and the needs of design, planning, scheduling and production process management. The Journal'' s subject matter also covers the design and operation of high efficient, precision, process machines. The Journal is a continuator of Machine Engineering Publisher for five years. The Journal appears quarterly, with a circulation of 100 copies, with each issue devoted entirely to a different topic. The papers are carefully selected and reviewed by distinguished world famous scientists and practitioners. The authors of the publications are eminent specialists from all over the world and Poland. Journal of Machine Engineering provides the best assistance to factories and universities. It enables factories to solve their difficult problems and manufacture good products at a low cost and fast rate. It enables educators to update their teaching and scientists to deepen their knowledge and pursue their research in the right direction.
期刊最新文献
Fracture Mechanics-Based Modelling of Tool Wear in Machining Ti6Al4V Considering the Microstructure of Cemented Carbide Tools Fuzzy Logic in Risk Assessment of Production Machines Failure in Forming and Assembly Processes Influence of the Substrate Size on the Cooling Behavior and Properties of the DED-LB Process Automatic Detection of Axes for Turning Parts Enabling Federated Learning Services Using OPC UA, Linked Data and GAIA-X in Cognitive Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1