{"title":"Non-divergence operators structured on homogeneous Hörmander vector fields: heat kernels and global Gaussian bounds","authors":"Stefano Biagi, M. Bramanti","doi":"10.57262/ade026-1112-621","DOIUrl":null,"url":null,"abstract":"Let $X_{1},...,X_{m}$ be a family of real smooth vector fields defined in $\\mathbb{R}^{n}$, $1$-homogeneous with respect to a nonisotropic family of dilations and satisfying Hormander's rank condition at $0$ (and therefore at every point of $\\mathbb{R}^{n}$). The vector fields are not assumed to be translation invariant with respect to any Lie group structure. Let us consider the nonvariational evolution operator $$ \\mathcal{H}:=\\sum_{i,j=1}^{m}a_{i,j}(t,x)X_{i}X_{j}-\\partial_{t}% $$ where $(a_{i,j}(t,x))_{i,j=1}^{m}$ is a symmetric uniformly positive $m\\times m$ matrix and the entries $a_{ij}$ are bounded Holder continuous functions on $\\mathbb{R}^{1+n}$, with respect to the \"parabolic\" distance induced by the vector fields. We prove the existence of a global heat kernel $\\Gamma(\\cdot;s,y)\\in C_{X,\\mathrm{loc}}^{2,\\alpha}(\\mathbb{R}^{1+n}\\setminus\\{(s,y)\\})$ for $\\mathcal{H}$, such that $\\Gamma$ satisfies two-sided Gaussian bounds and $\\partial_{t}\\Gamma, X_{i}\\Gamma,X_{i}X_{j}\\Gamma$ satisfy upper Gaussian bounds on every strip $[0,T]\\times\\mathbb{R}^n$. We also prove a scale-invariant parabolic Harnack inequality for $\\mathcal{H}$, and a standard Harnack inequality for the corresponding stationary operator $$ \n\\mathcal{L}:=\\sum_{i,j=1}^{m}a_{i,j}(x)X_{i}X_{j}. \n$$ \nwith Holder continuos coefficients.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/ade026-1112-621","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Let $X_{1},...,X_{m}$ be a family of real smooth vector fields defined in $\mathbb{R}^{n}$, $1$-homogeneous with respect to a nonisotropic family of dilations and satisfying Hormander's rank condition at $0$ (and therefore at every point of $\mathbb{R}^{n}$). The vector fields are not assumed to be translation invariant with respect to any Lie group structure. Let us consider the nonvariational evolution operator $$ \mathcal{H}:=\sum_{i,j=1}^{m}a_{i,j}(t,x)X_{i}X_{j}-\partial_{t}% $$ where $(a_{i,j}(t,x))_{i,j=1}^{m}$ is a symmetric uniformly positive $m\times m$ matrix and the entries $a_{ij}$ are bounded Holder continuous functions on $\mathbb{R}^{1+n}$, with respect to the "parabolic" distance induced by the vector fields. We prove the existence of a global heat kernel $\Gamma(\cdot;s,y)\in C_{X,\mathrm{loc}}^{2,\alpha}(\mathbb{R}^{1+n}\setminus\{(s,y)\})$ for $\mathcal{H}$, such that $\Gamma$ satisfies two-sided Gaussian bounds and $\partial_{t}\Gamma, X_{i}\Gamma,X_{i}X_{j}\Gamma$ satisfy upper Gaussian bounds on every strip $[0,T]\times\mathbb{R}^n$. We also prove a scale-invariant parabolic Harnack inequality for $\mathcal{H}$, and a standard Harnack inequality for the corresponding stationary operator $$
\mathcal{L}:=\sum_{i,j=1}^{m}a_{i,j}(x)X_{i}X_{j}.
$$
with Holder continuos coefficients.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.