A trajectory summarisation generation method based on the mobile robot behaviour analysis

IF 1.5 Q3 AUTOMATION & CONTROL SYSTEMS IET Cybersystems and Robotics Pub Date : 2022-09-23 DOI:10.1049/csy2.12063
Weifeng Liu, Liwen Ma, Shaoyong Qu, Zhangming Peng
{"title":"A trajectory summarisation generation method based on the mobile robot behaviour analysis","authors":"Weifeng Liu,&nbsp;Liwen Ma,&nbsp;Shaoyong Qu,&nbsp;Zhangming Peng","doi":"10.1049/csy2.12063","DOIUrl":null,"url":null,"abstract":"<p>The semantic representation of the trajectory is conducive to enrich the content of trajectory data mining. A trajectory summarisation generation method based on the mobile robot behaviour analysis was proposed to realize the abstract expression and semantic representation of the spatio-temporal motion features of the robot and its environmental interaction state. First, the behavioural semantic modelling and representation of the mobile robot are completed by modelling the sub-trajectory and calculating the topological behaviour (TOP). Second, Chinese word segmentation and semantic slot filling methods are used to combine with hierarchical clustering to perform basic word extraction and classification for describing trajectory sentences. Then, the description language frame is extracted based on the TOP, and the final trajectory summarisation is generated. The result shows that the proposed method can semantically represent robot behaviours with different motion features and topological features, extract two verb-frameworks for describing the sentences according to their topological features, and dynamically adjust the syntactic structure for the different topological behaviours between the target and the environment. The proposed  method can generate semantic information of relatively high quality for spatio-temporal data and help to understand the higher-order semantics of moving robot behaviour.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"5 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12063","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cybersystems and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/csy2.12063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The semantic representation of the trajectory is conducive to enrich the content of trajectory data mining. A trajectory summarisation generation method based on the mobile robot behaviour analysis was proposed to realize the abstract expression and semantic representation of the spatio-temporal motion features of the robot and its environmental interaction state. First, the behavioural semantic modelling and representation of the mobile robot are completed by modelling the sub-trajectory and calculating the topological behaviour (TOP). Second, Chinese word segmentation and semantic slot filling methods are used to combine with hierarchical clustering to perform basic word extraction and classification for describing trajectory sentences. Then, the description language frame is extracted based on the TOP, and the final trajectory summarisation is generated. The result shows that the proposed method can semantically represent robot behaviours with different motion features and topological features, extract two verb-frameworks for describing the sentences according to their topological features, and dynamically adjust the syntactic structure for the different topological behaviours between the target and the environment. The proposed  method can generate semantic information of relatively high quality for spatio-temporal data and help to understand the higher-order semantics of moving robot behaviour.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于移动机器人行为分析的轨迹汇总生成方法
轨迹的语义表示有利于丰富轨迹数据挖掘的内容。提出了一种基于移动机器人行为分析的轨迹汇总生成方法,实现了机器人时空运动特征及其环境交互状态的抽象表达和语义表示。首先,通过子轨迹建模和拓扑行为计算(TOP)完成移动机器人的行为语义建模和表示。其次,采用汉语分词和语义槽填充方法,结合层次聚类对轨迹句进行基本词提取和分类;然后,基于TOP提取描述语言框架,生成最终的轨迹摘要。结果表明,该方法可以对具有不同运动特征和拓扑特征的机器人行为进行语义表示,根据句子的拓扑特征提取两个动词框架来描述句子,并针对目标和环境之间的不同拓扑行为动态调整句法结构。该方法可以为时空数据生成质量较高的语义信息,有助于理解机器人运动行为的高阶语义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Cybersystems and Robotics
IET Cybersystems and Robotics Computer Science-Information Systems
CiteScore
3.70
自引率
0.00%
发文量
31
审稿时长
34 weeks
期刊最新文献
3D-printed biomimetic and bioinspired soft actuators Correction-enabled reversible data hiding with pixel repetition for high embedding rate and quality preservation Anti-sloshing control: Flatness-based trajectory planning and tracking control with an integrated extended state observer Internal and external disturbances aware motion planning and control for quadrotors Multi-feature fusion and memory-based mobile robot target tracking system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1