Investigation of the Effect of Milling Duration on a Ce-Gd Doped Zirconolite Phase Assemblage Synthesised by Hot Isostatic Pressing

IF 2.7 Q1 MATERIALS SCIENCE, CERAMICS Ceramics-Switzerland Pub Date : 2023-03-11 DOI:10.3390/ceramics6010043
Merve Kuman, L. J. Gardner, L. R. Blackburn, M. Stennett, N. Hyatt, C. Corkhill
{"title":"Investigation of the Effect of Milling Duration on a Ce-Gd Doped Zirconolite Phase Assemblage Synthesised by Hot Isostatic Pressing","authors":"Merve Kuman, L. J. Gardner, L. R. Blackburn, M. Stennett, N. Hyatt, C. Corkhill","doi":"10.3390/ceramics6010043","DOIUrl":null,"url":null,"abstract":"Zirconolite is a candidate ceramic wasteform under consideration for the immobilisation of the UK civil PuO2 inventory. In the present work, a baseline dual-substituted zirconolite with the target composition (Ca0.783Gd0.017Ce0.2)(Zr0.883Gd0.017Ce0.1)(Ti1.6Al0.4)O7 was fabricated by hot isostatic pressing (HIPing). In order to optimise the microstructure properties and improve the obtained yield of the zirconolite phase, a range of planetary ball milling parameters were investigated prior to consolidation by HIP. This included milling the batched oxide precursors at 400 rpm for up to 120 min, the pre-milling of CeO2 (PuO2 surrogate) to reduce the particle size and using a CeO2 source with finer particle size (<5 µm). The HIPed zirconolite product consisted of both zirconolite-2M and zirconolite-3T polytypes in varying proportions; however, an additional perovskite phase was obtained in varying quantities as a secondary phase. Ce L3-edge X-ray absorption spectroscopy was utilised to determine the Ce oxidation state. In this study, the ideal milling parameter for the fabrication of zirconolite waste forms was defined as 60 min at 400 rpm.","PeriodicalId":33263,"journal":{"name":"Ceramics-Switzerland","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics-Switzerland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ceramics6010043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Zirconolite is a candidate ceramic wasteform under consideration for the immobilisation of the UK civil PuO2 inventory. In the present work, a baseline dual-substituted zirconolite with the target composition (Ca0.783Gd0.017Ce0.2)(Zr0.883Gd0.017Ce0.1)(Ti1.6Al0.4)O7 was fabricated by hot isostatic pressing (HIPing). In order to optimise the microstructure properties and improve the obtained yield of the zirconolite phase, a range of planetary ball milling parameters were investigated prior to consolidation by HIP. This included milling the batched oxide precursors at 400 rpm for up to 120 min, the pre-milling of CeO2 (PuO2 surrogate) to reduce the particle size and using a CeO2 source with finer particle size (<5 µm). The HIPed zirconolite product consisted of both zirconolite-2M and zirconolite-3T polytypes in varying proportions; however, an additional perovskite phase was obtained in varying quantities as a secondary phase. Ce L3-edge X-ray absorption spectroscopy was utilised to determine the Ce oxidation state. In this study, the ideal milling parameter for the fabrication of zirconolite waste forms was defined as 60 min at 400 rpm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磨矿时间对热等静压合成Ce-Gd掺杂锆石相组合影响的研究
锆石是一种候选的陶瓷废物形式,正在考虑用于固定化英国民用PuO2库存。本文采用热等静压(HIPing)法制备了一种目标成分为(Ca0.783Gd0.017Ce0.2)(Zr0.883Gd0.017Ce0.1)(Ti1.6Al0.4)O7的基线双取代锆石。为了优化锆石相的微观结构性能,提高获得的锆石相的收率,在HIP固结前研究了一系列行星球磨参数。这包括以400转/分的速度磨铣成批氧化物前驱体,持续120分钟,预磨CeO2 (PuO2替代品)以减小粒径,并使用更细粒径(<5µm)的CeO2源。HIPed锆石产物由不同比例的锆石- 2m多型和锆石- 3t多型组成;然而,获得了不同数量的钙钛矿相作为次级相。Ce l3边缘x射线吸收光谱法测定了Ce的氧化态。在本研究中,制造锆石废料的理想铣削参数被定义为400转/分钟,60分钟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
7.10%
发文量
66
审稿时长
10 weeks
期刊最新文献
Non-Invasive On-Site XRF and Raman Classification and Dating of Ancient Ceramics: Application to 18th and 19th Century Meissen Porcelain (Saxony) and Comparison with Chinese Porcelain Biomechanical Behavior of Lithium-Disilicate-Modified Endocrown Restorations: A Three-Dimensional Finite Element Analysis Preparation and Characterization of Freeze-Dried β-Tricalcium Phosphate/Barium Titanate/Collagen Composite Scaffolds for Bone Tissue Engineering in Orthopedic Applications Ceramic Filters for the Efficient Removal of Azo Dyes and Pathogens in Water Bioinspired Mechanical Materials—Development of High-Toughness Ceramics through Complexation of Calcium Phosphate and Organic Polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1