A novel crystallographic location of rattling atoms in filled Eu x Co4Sb12 skutterudites prepared under high-pressure conditions

IF 0.9 4区 材料科学 Q3 CRYSTALLOGRAPHY Zeitschrift Fur Kristallographie-Crystalline Materials Pub Date : 2022-12-12 DOI:10.1515/zkri-2022-0051
J. E. Rodrigues, J. Gainza, F. Serrano-Sánchez, N. Nemes, Ó. J. Durá, J. Martínez, J. Alonso
{"title":"A novel crystallographic location of rattling atoms in filled Eu x Co4Sb12 skutterudites prepared under high-pressure conditions","authors":"J. E. Rodrigues, J. Gainza, F. Serrano-Sánchez, N. Nemes, Ó. J. Durá, J. Martínez, J. Alonso","doi":"10.1515/zkri-2022-0051","DOIUrl":null,"url":null,"abstract":"Abstract Thermoelectric M x Co4Sb12 skutterudites are well-known to exhibit a reduced thermal conductivity thanks to the rattling effect of the M-filler at the large cages occurring in the framework, centered at the 2a sites of the I m 3 ‾ $Im\\overline{3}$ space group. A novel Eu-filled skutterudite has been synthesized under high-pressure conditions at 3.5 GPa in a piston-cylinder hydrostatic press. The structural refinement from high-angular resolution synchrotron X-ray diffraction (SXRD) patterns unveils an unusual position for Eu filler atoms. By difference Fourier synthesis they are found at 12d sites, conforming statistically occupied octahedra within the mentioned cages around 2a positions. The Debye temperature was estimated by averaging the isotropic displacements by the atomic masses, leading to θ D ${\\theta }_{D}$ of 273(2) K. Oftedal plots concerning the y and z Sb fractional positions, the unit-cell parameter a and M filling fraction include the novel Eu specimen in the trend observed for other filled materials prepared under high-pressure, including rare-earths, alkali or alkali-earth elements, all accepted as rattlers in filled skutterudites. A total thermal conductivity (κ) of 0.82 W m−1 K−1 is measured at 773 K for Eu0.02(1)Co4Sb12, below that of other filled skutterudites, which is promoted by the enhanced phonon scattering of Eu located at 12d sites. FE-SEM images showed large, homogeneous grains, well compacted after the high-pressure synthesis.","PeriodicalId":48676,"journal":{"name":"Zeitschrift Fur Kristallographie-Crystalline Materials","volume":"238 1","pages":"47 - 56"},"PeriodicalIF":0.9000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift Fur Kristallographie-Crystalline Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/zkri-2022-0051","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Thermoelectric M x Co4Sb12 skutterudites are well-known to exhibit a reduced thermal conductivity thanks to the rattling effect of the M-filler at the large cages occurring in the framework, centered at the 2a sites of the I m 3 ‾ $Im\overline{3}$ space group. A novel Eu-filled skutterudite has been synthesized under high-pressure conditions at 3.5 GPa in a piston-cylinder hydrostatic press. The structural refinement from high-angular resolution synchrotron X-ray diffraction (SXRD) patterns unveils an unusual position for Eu filler atoms. By difference Fourier synthesis they are found at 12d sites, conforming statistically occupied octahedra within the mentioned cages around 2a positions. The Debye temperature was estimated by averaging the isotropic displacements by the atomic masses, leading to θ D ${\theta }_{D}$ of 273(2) K. Oftedal plots concerning the y and z Sb fractional positions, the unit-cell parameter a and M filling fraction include the novel Eu specimen in the trend observed for other filled materials prepared under high-pressure, including rare-earths, alkali or alkali-earth elements, all accepted as rattlers in filled skutterudites. A total thermal conductivity (κ) of 0.82 W m−1 K−1 is measured at 773 K for Eu0.02(1)Co4Sb12, below that of other filled skutterudites, which is promoted by the enhanced phonon scattering of Eu located at 12d sites. FE-SEM images showed large, homogeneous grains, well compacted after the high-pressure synthesis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在高压条件下制备的Eu x Co4Sb12填充方晶中嘎嘎原子的新晶体位置
众所周知,热电M x Co4Sb12 skutterudites表现出降低的导热性,这要归功于M-填料在框架中出现的大笼上的震动效应,以I M 3 $Im\overline{3}$空间群的2a个位置为中心。在高压条件下,在活塞缸静压下合成了一种新型的铕填充方菱铁矿。高角分辨率同步x射线衍射(SXRD)模式的结构细化揭示了Eu填充原子的不寻常位置。通过差分傅立叶合成,它们在12d个位点上被发现,符合统计上占据的八面体在上述笼中约2a个位置。通过原子质量平均各向同性位移来估计Debye温度,得到θ D ${\theta }_{D}$ (273(2) k)。通常关于y和z Sb分数位置的图,单元格参数a和M填充分数包括新的Eu样品,这是在高压下制备的其他填充材料中观察到的趋势,包括稀土,碱或碱土元素,所有这些都被认为是填充的方块石中的尾端。在773 K下,Eu0.02(1)Co4Sb12的总热导率(κ)为0.82 W m−1 K−1,低于其他填充的方粒矿,这是由于Eu在12d位置的声子散射增强所致。FE-SEM图像显示,高压合成后的材料颗粒大而均匀,压实良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.00
自引率
16.70%
发文量
55
期刊介绍: Zeitschrift für Kristallographie – Crystalline Materials was founded in 1877 by Paul von Groth and is today one of the world’s oldest scientific journals. It offers a place for researchers to present results of their theoretical experimental crystallographic studies. The journal presents significant results on structures and on properties of organic/inorganic substances with crystalline character, periodically ordered, modulated or quasicrystalline on static and dynamic phenomena applying the various methods of diffraction, spectroscopy and microscopy.
期刊最新文献
Widespread Autonomic Physiological Coupling Across the Brain-Body Axis. Cellular underpinnings of the selective vulnerability to tauopathic insults in Alzheimer's disease. Effect of awake prone positioning in hypoxaemic adult patients with COVID-19. Helical self-assembly of an unusual pseudopeptide: crystallographic evidence Cobalt-bearing adamite from Cap Garonne, Mine du Pradet, France – structural relationship to olivenite and magnetic behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1