On the density of bounded bases

Pub Date : 2023-08-01 DOI:10.1017/S0013091523000421
Jin-Hui Fang
{"title":"On the density of bounded bases","authors":"Jin-Hui Fang","doi":"10.1017/S0013091523000421","DOIUrl":null,"url":null,"abstract":"Abstract For a nonempty set A of integers and an integer n, let $r_{A}(n)$ be the number of representations of n in the form $n=a+a'$, where $a\\leqslant a'$ and $a, a'\\in A$, and $d_{A}(n)$ be the number of representations of n in the form $n=a-a'$, where $a, a'\\in A$. The binary support of a positive integer n is defined as the subset S(n) of nonnegative integers consisting of the exponents in the binary expansion of n, i.e., $n=\\sum_{i\\in S(n)} 2^i$, $S(-n)=-S(n)$ and $S(0)=\\emptyset$. For real number x, let $A(-x,x)$ be the number of elements $a\\in A$ with $-x\\leqslant a\\leqslant x$. The famous Erdős-Turán Conjecture states that if A is a set of positive integers such that $r_A(n)\\geqslant 1$ for all sufficiently large n, then $\\limsup_{n\\rightarrow\\infty}r_A(n)=\\infty$. In 2004, Nešetřil and Serra initially introduced the notation of “bounded” property and confirmed the Erdős-Turán conjecture for a class of bounded bases. They also proved that, there exists a set A of integers satisfying $r_A(n)=1$ for all integers n and $|S(x)\\bigcup S(y)|\\leqslant 4|S(x+y)|$ for $x,y\\in A$. On the other hand, Nathanson proved that there exists a set A of integers such that $r_A(n)=1$ for all integers n and $2\\log x/\\log 5+c_1\\leqslant A(-x,x)\\leqslant 2\\log x/\\log 3+c_2$ for all $x\\geqslant 1$, where $c_1,c_2$ are absolute constants. In this paper, following these results, we prove that, there exists a set A of integers such that: $r_A(n)=1$ for all integers n and $d_A(n)=1$ for all positive integers n, $|S(x)\\bigcup S(y)|\\leqslant 4|S(x+y)|$ for $x,y\\in A$ and $A(-x,x) \\gt (4/\\log 5)\\log\\log x+c$ for all $x\\geqslant 1$, where c is an absolute constant. Furthermore, we also construct a family of arbitrarily spare such sets A.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0013091523000421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract For a nonempty set A of integers and an integer n, let $r_{A}(n)$ be the number of representations of n in the form $n=a+a'$, where $a\leqslant a'$ and $a, a'\in A$, and $d_{A}(n)$ be the number of representations of n in the form $n=a-a'$, where $a, a'\in A$. The binary support of a positive integer n is defined as the subset S(n) of nonnegative integers consisting of the exponents in the binary expansion of n, i.e., $n=\sum_{i\in S(n)} 2^i$, $S(-n)=-S(n)$ and $S(0)=\emptyset$. For real number x, let $A(-x,x)$ be the number of elements $a\in A$ with $-x\leqslant a\leqslant x$. The famous Erdős-Turán Conjecture states that if A is a set of positive integers such that $r_A(n)\geqslant 1$ for all sufficiently large n, then $\limsup_{n\rightarrow\infty}r_A(n)=\infty$. In 2004, Nešetřil and Serra initially introduced the notation of “bounded” property and confirmed the Erdős-Turán conjecture for a class of bounded bases. They also proved that, there exists a set A of integers satisfying $r_A(n)=1$ for all integers n and $|S(x)\bigcup S(y)|\leqslant 4|S(x+y)|$ for $x,y\in A$. On the other hand, Nathanson proved that there exists a set A of integers such that $r_A(n)=1$ for all integers n and $2\log x/\log 5+c_1\leqslant A(-x,x)\leqslant 2\log x/\log 3+c_2$ for all $x\geqslant 1$, where $c_1,c_2$ are absolute constants. In this paper, following these results, we prove that, there exists a set A of integers such that: $r_A(n)=1$ for all integers n and $d_A(n)=1$ for all positive integers n, $|S(x)\bigcup S(y)|\leqslant 4|S(x+y)|$ for $x,y\in A$ and $A(-x,x) \gt (4/\log 5)\log\log x+c$ for all $x\geqslant 1$, where c is an absolute constant. Furthermore, we also construct a family of arbitrarily spare such sets A.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
关于有界基的密度
对于一个由整数和整数n组成的非空集合a,设$r_{A}(n)$为n以$n=a+a'$形式表示的个数,其中$a\leqslant a'$和$a, a'\in A$, $d_{A}(n)$为n以$n=a-a'$形式表示的个数,其中$a, a'\in A$。正整数n的二进制支持定义为n的二进制展开式中的指数组成的非负整数子集S(n),即$n=\sum_{i\in S(n)} 2^i$, $S(-n)=-S(n)$和$S(0)=\emptyset$。对于实数x,设$A(-x,x)$为含有$-x\leqslant a\leqslant x$的元素个数$a\in A$。著名的Erdős-Turán猜想指出,如果A是一组正整数,使得$r_A(n)\geqslant 1$对于所有足够大的n,那么$\limsup_{n\rightarrow\infty}r_A(n)=\infty$。2004年,Nešetřil和Serra首次引入了“有界”性质的符号,并证实了一类有界基的Erdős-Turán猜想。他们还证明了存在一个整数集合a,它对所有整数n满足$r_A(n)=1$,对$x,y\in A$满足$|S(x)\bigcup S(y)|\leqslant 4|S(x+y)|$。另一方面,Nathanson证明了存在一个整数集合a,使得$r_A(n)=1$对于所有整数n和$2\log x/\log 5+c_1\leqslant A(-x,x)\leqslant 2\log x/\log 3+c_2$对于所有$x\geqslant 1$,其中$c_1,c_2$是绝对常数。本文根据这些结果,证明了存在一个整数集合a,使得:对于所有整数n $r_A(n)=1$,对于所有正整数n $d_A(n)=1$,对于$x,y\in A$$|S(x)\bigcup S(y)|\leqslant 4|S(x+y)|$,对于所有$x\geqslant 1$$A(-x,x) \gt (4/\log 5)\log\log x+c$,其中c是一个绝对常数。进一步,我们还构造了一个任意空闲的这样的集合a族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1