The Influence of the Thermal Effect on the Stress-Strain State of the Soil

IF 0.5 Q4 PHYSICS, APPLIED Latvian Journal of Physics and Technical Sciences Pub Date : 2023-08-01 DOI:10.2478/lpts-2023-0024
N. Remez, A. Dychko, A. Kraychuk, S. Kraychuk, N. Ostapchuk
{"title":"The Influence of the Thermal Effect on the Stress-Strain State of the Soil","authors":"N. Remez, A. Dychko, A. Kraychuk, S. Kraychuk, N. Ostapchuk","doi":"10.2478/lpts-2023-0024","DOIUrl":null,"url":null,"abstract":"Abstract The present paper provides the dependence of the temperature change on time and the depth of the soil massif based on numerical calculations. Mathematical modelling of the one-dimensional soil temperature field via an algorithm and a PC program is carried out without taking into account the influence of the phase transition of moisture in the soil pores during seasonal freezing and thawing using the finite difference method. The amplitude of fluctuations in the temperature regime is obtained as that decreases with depth from the soil surface. It is established that over time heat spreads from the pipeline to the surface of the soil, and over time more intense heating occurs both near the pipeline and in the body of the soil massif.","PeriodicalId":43603,"journal":{"name":"Latvian Journal of Physics and Technical Sciences","volume":"60 1","pages":"52 - 60"},"PeriodicalIF":0.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latvian Journal of Physics and Technical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/lpts-2023-0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The present paper provides the dependence of the temperature change on time and the depth of the soil massif based on numerical calculations. Mathematical modelling of the one-dimensional soil temperature field via an algorithm and a PC program is carried out without taking into account the influence of the phase transition of moisture in the soil pores during seasonal freezing and thawing using the finite difference method. The amplitude of fluctuations in the temperature regime is obtained as that decreases with depth from the soil surface. It is established that over time heat spreads from the pipeline to the surface of the soil, and over time more intense heating occurs both near the pipeline and in the body of the soil massif.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热效应对土壤应力-应变状态的影响
摘要基于数值计算,给出了温度变化对时间和土体深度的依赖关系。在不考虑季节冻融过程中孔隙水分相变影响的情况下,采用有限差分法对一维土壤温度场进行了数学建模。温度波动的幅度是随着距离土壤表面的深度而减小的。可以确定,随着时间的推移,热量从管道传播到土壤表面,并且随着时间的推移,在管道附近和土体内部都发生了更强烈的加热。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
16.70%
发文量
41
审稿时长
5 weeks
期刊介绍: Latvian Journal of Physics and Technical Sciences (Latvijas Fizikas un Tehnisko Zinātņu Žurnāls) publishes experimental and theoretical papers containing results not published previously and review articles. Its scope includes Energy and Power, Energy Engineering, Energy Policy and Economics, Physical Sciences, Physics and Applied Physics in Engineering, Astronomy and Spectroscopy.
期刊最新文献
The Use of Renewable Energy and Capillary Heat Exchangers for Energy Savings in the Existing Apartment Modelling of Methanol Production From Biogas Applying Dynamic U-Value Measurements for State Forecasting in Buildings Numerical Insights Into Gas Mixing System Design for Energy Conversion Processes Density-Based Topological Optimization of 3D-Printed Casts for Fracture Treatment with Freefem Software
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1