Tahereh Mohammadi Hafshejani, Xiaoyang Zhong, John Kim, Bahar Dadfar, J. Lahann
{"title":"Chemical and Topological Control of Surfaces Using Functional Parylene Coatings","authors":"Tahereh Mohammadi Hafshejani, Xiaoyang Zhong, John Kim, Bahar Dadfar, J. Lahann","doi":"10.1055/s-0043-1761309","DOIUrl":null,"url":null,"abstract":"Chemical vapor deposition (CVD) polymerization is a prevalent technique for fabricating conformal, defect-free, and systematically adjustable organic thin films. CVD is particularly beneficial for barrier coatings due to its ability to eliminate solvent-related environmental, health, and safety risk factors and provide a wide spectrum of post-polymerization modification strategies. This review discusses poly-p-xylylene and its functional derivatives. CVD polymerization of [2.2]paracyclophane precursors has undergone a recent renaissance due to advancements in chemical and morphological surface manipulation. This review summarizes emerging trends based on the following outline:Table of content:1 Introduction2 CVD Polymerization as a Sustainable Coating Technology3 CVD Instrumentation4 Poly-p-xylylene Coatings: Background of Polymerization Process and Functionalized Films5 Main Applications of Poly-p-xylylenes6 Area-Selective CVD Polymerization7 Fabrication and Applications of Topological Structures8 Conclusions and Outlook","PeriodicalId":93348,"journal":{"name":"Organic Materials","volume":"5 1","pages":"98 - 111"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0043-1761309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Chemical vapor deposition (CVD) polymerization is a prevalent technique for fabricating conformal, defect-free, and systematically adjustable organic thin films. CVD is particularly beneficial for barrier coatings due to its ability to eliminate solvent-related environmental, health, and safety risk factors and provide a wide spectrum of post-polymerization modification strategies. This review discusses poly-p-xylylene and its functional derivatives. CVD polymerization of [2.2]paracyclophane precursors has undergone a recent renaissance due to advancements in chemical and morphological surface manipulation. This review summarizes emerging trends based on the following outline:Table of content:1 Introduction2 CVD Polymerization as a Sustainable Coating Technology3 CVD Instrumentation4 Poly-p-xylylene Coatings: Background of Polymerization Process and Functionalized Films5 Main Applications of Poly-p-xylylenes6 Area-Selective CVD Polymerization7 Fabrication and Applications of Topological Structures8 Conclusions and Outlook