Yumei Ye , Qiang Yang , Jingang Zhang , Songhe Meng , Jun Wang , Xia Tang
{"title":"A reconfigurable dynamic Bayesian network for digital twin modeling of structures with multiple damage modes","authors":"Yumei Ye , Qiang Yang , Jingang Zhang , Songhe Meng , Jun Wang , Xia Tang","doi":"10.1016/j.taml.2023.100440","DOIUrl":null,"url":null,"abstract":"<div><p>Dynamic Bayesian networks (DBNs) are commonly employed for structural digital twin modeling. At present, most researches only consider single damage mode tracking. It is not sufficient for a reusable spacecraft as various damage modes may occur during its service life. A reconfigurable DBN method is proposed in this paper. The structure of the DBN can be updated dynamically to describe the interactions between different damages. Two common damages (fatigue and bolt loosening) for a spacecraft structure are considered in a numerical example. The results show that the reconfigurable DBN can accurately predict the acceleration phenomenon of crack growth caused by bolt loosening while the DBN with time-invariant structure cannot, even with enough updates. The definition of interaction coefficients makes the reconfigurable DBN easy to track multiple damages and be extended to more complex problems. The method also has a good physical interpretability as the reconfiguration of DBN corresponds to a specific mechanism. Satisfactory predictions do not require precise knowledge of reconfiguration conditions, making the method more practical.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034923000119","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic Bayesian networks (DBNs) are commonly employed for structural digital twin modeling. At present, most researches only consider single damage mode tracking. It is not sufficient for a reusable spacecraft as various damage modes may occur during its service life. A reconfigurable DBN method is proposed in this paper. The structure of the DBN can be updated dynamically to describe the interactions between different damages. Two common damages (fatigue and bolt loosening) for a spacecraft structure are considered in a numerical example. The results show that the reconfigurable DBN can accurately predict the acceleration phenomenon of crack growth caused by bolt loosening while the DBN with time-invariant structure cannot, even with enough updates. The definition of interaction coefficients makes the reconfigurable DBN easy to track multiple damages and be extended to more complex problems. The method also has a good physical interpretability as the reconfiguration of DBN corresponds to a specific mechanism. Satisfactory predictions do not require precise knowledge of reconfiguration conditions, making the method more practical.
期刊介绍:
An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).