Microneedles: materials, fabrication, and biomedical applications

IF 3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Biomedical Microdevices Pub Date : 2023-06-06 DOI:10.1007/s10544-023-00658-y
Xiaojin Luo, Li Yang, Yue Cui
{"title":"Microneedles: materials, fabrication, and biomedical applications","authors":"Xiaojin Luo,&nbsp;Li Yang,&nbsp;Yue Cui","doi":"10.1007/s10544-023-00658-y","DOIUrl":null,"url":null,"abstract":"<div><p>The microneedles have attracted great interests for a wide range of transdermal biomedical applications, such as biosensing and drug delivery, due to the advantages of being painless, semi-invasive, and sustainable. The ongoing challenges are the materials and fabrication methods of the microneedles in order to obtain a specific shape, configuration and function of the microneedles to achieve a target biomedical application. Here, this review would introduce the types of materials of the microneedles firstly. The hardness, Young's modulus, geometric structure, processability, biocompatibility and degradability of the microneedles are explored as well. Then, the fabrication methods for the solid and hollow microneedles in recent years are reviewed in detail, and the advantages and disadvantages of each process are analyzed and compared. Finally, the biomedical applications of the microneedles are reviewed, including biosensing, drug delivery, body fluid extraction, and nerve stimulation. It is expected that this work provides the fundamental knowledge for developing new microneedle devices, as well as the applications in a variety of biomedical fields.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"25 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10544-023-00658-y.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-023-00658-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 4

Abstract

The microneedles have attracted great interests for a wide range of transdermal biomedical applications, such as biosensing and drug delivery, due to the advantages of being painless, semi-invasive, and sustainable. The ongoing challenges are the materials and fabrication methods of the microneedles in order to obtain a specific shape, configuration and function of the microneedles to achieve a target biomedical application. Here, this review would introduce the types of materials of the microneedles firstly. The hardness, Young's modulus, geometric structure, processability, biocompatibility and degradability of the microneedles are explored as well. Then, the fabrication methods for the solid and hollow microneedles in recent years are reviewed in detail, and the advantages and disadvantages of each process are analyzed and compared. Finally, the biomedical applications of the microneedles are reviewed, including biosensing, drug delivery, body fluid extraction, and nerve stimulation. It is expected that this work provides the fundamental knowledge for developing new microneedle devices, as well as the applications in a variety of biomedical fields.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微针:材料、制造和生物医学应用
由于其无痛、半侵入性和可持续性的优点,微针在生物传感和药物输送等广泛的透皮生物医学应用中引起了人们的极大兴趣。为了获得特定的微针形状、结构和功能,以实现目标生物医学应用,目前存在的挑战是微针的材料和制造方法。本文首先介绍了微针的材料类型。对微针的硬度、杨氏模量、几何结构、可加工性、生物相容性和可降解性进行了研究。然后,详细综述了近年来固体微针和空心微针的制备方法,并对每种工艺的优缺点进行了分析和比较。最后,综述了微针在生物传感、给药、体液提取和神经刺激等方面的应用。期望本工作为开发新型微针装置以及在各种生物医学领域的应用提供基础知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Microdevices
Biomedical Microdevices 工程技术-工程:生物医学
CiteScore
6.90
自引率
3.60%
发文量
32
审稿时长
6 months
期刊介绍: Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules. Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.
期刊最新文献
Smartphone-driven centrifugal microfluidics for diagnostics in resource limited settings Enhancing biomedical imaging: the role of nanoparticle-based contrast agents Panoramic review on polymeric microneedle arrays for clinical applications Construction of a pumpless gravity-driven vascularized Skin-on-a-Chip for the study of hepatocytotoxicity in percutaneous exposure to exogenous chemicals Functionalization of microbubbles in a microfluidic chip for biosensing application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1