{"title":"Study of Heat and Mass Transfer in a Rotating Nanofluid Layer Under Gravity Modulation","authors":"S. H. Manjula, P. Kiran, S. Gaikwad","doi":"10.1166/jon.2023.1971","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the effect of gravity modulation and rotation on thermal instability in a horizontal layer of a nanofluid. Finite amplitudes have been derived using the minimal Fourier series expressions of physical variables in the presence of modulation and slow time.\n Here we incorporates the layer of nanofluid with effect of Brownian motion along with thermophoresis. Heat and mass transfer are evaluated in terms of finite amplitudes and calculated by Nusselt numbers for fluid and concentration. It is found that, gravity modulation and rotation can be used\n effectively to regulate heat and mass transfer. This modulation can be easily felt by shaking the layer vertically with sinusoidal manner. The numerical results are obtained for amplitude of modulation and presented graphically. It is found that rotation and frequency of modulation delays\n the rate of heat and mass transfer. This shows that a stabilizing nature of gravity modulation and rotation against a non rotating system. A comparison made between modulated and unmodulated and found that modulated system influence the stability problem than un modulated system. Similarly\n modulated system transfer more heat mass transfer than unmodulated case. Finally we have drawn streamlines and nanoparticle isotherms to show the convective phenomenon.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2023.1971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper we investigate the effect of gravity modulation and rotation on thermal instability in a horizontal layer of a nanofluid. Finite amplitudes have been derived using the minimal Fourier series expressions of physical variables in the presence of modulation and slow time.
Here we incorporates the layer of nanofluid with effect of Brownian motion along with thermophoresis. Heat and mass transfer are evaluated in terms of finite amplitudes and calculated by Nusselt numbers for fluid and concentration. It is found that, gravity modulation and rotation can be used
effectively to regulate heat and mass transfer. This modulation can be easily felt by shaking the layer vertically with sinusoidal manner. The numerical results are obtained for amplitude of modulation and presented graphically. It is found that rotation and frequency of modulation delays
the rate of heat and mass transfer. This shows that a stabilizing nature of gravity modulation and rotation against a non rotating system. A comparison made between modulated and unmodulated and found that modulated system influence the stability problem than un modulated system. Similarly
modulated system transfer more heat mass transfer than unmodulated case. Finally we have drawn streamlines and nanoparticle isotherms to show the convective phenomenon.
期刊介绍:
Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.