On Quantum Optimal Transport

Pub Date : 2023-06-06 DOI:10.1007/s11040-023-09456-7
Sam Cole, Michał Eckstein, Shmuel Friedland, Karol Życzkowski
{"title":"On Quantum Optimal Transport","authors":"Sam Cole,&nbsp;Michał Eckstein,&nbsp;Shmuel Friedland,&nbsp;Karol Życzkowski","doi":"10.1007/s11040-023-09456-7","DOIUrl":null,"url":null,"abstract":"<div><p>We analyze a quantum version of the Monge–Kantorovich optimal transport problem. The quantum transport cost related to a Hermitian cost matrix <i>C</i> is minimized over the set of all bipartite coupling states <span>\\(\\rho ^{AB}\\)</span> with fixed reduced density matrices <span>\\(\\rho ^A\\)</span> and <span>\\(\\rho ^B\\)</span> of size <i>m</i> and <i>n</i>. The minimum quantum optimal transport cost <span>\\(\\textrm{T}^Q_{C}(\\rho ^A,\\rho ^B)\\)</span> can be efficiently computed using semidefinite programming. In the case <span>\\(m=n\\)</span> the cost <span>\\(\\textrm{T}^Q_{C}\\)</span> gives a semidistance if and only if <i>C</i> is positive semidefinite and vanishes exactly on the subspace of symmetric matrices. Furthermore, if <i>C</i> satisfies the above conditions, then <span>\\(\\sqrt{\\textrm{T}^Q_{C}}\\)</span> induces a quantum analogue of the Wasserstein-2 distance. Taking the quantum cost matrix <span>\\(C^Q\\)</span> to be the projector on the antisymmetric subspace, we provide a semi-analytic expression for <span>\\(\\textrm{T}^Q_{C^Q}\\)</span> for any pair of single-qubit states and show that its square root yields a transport distance on the Bloch ball. Numerical simulations suggest that this property holds also in higher dimensions. Assuming that the cost matrix suffers decoherence and that the density matrices become diagonal, we study the quantum-to-classical transition of the Monge–Kantorovich distance, propose a continuous family of interpolating distances, and demonstrate that the quantum transport is cheaper than the classical one. Furthermore, we introduce a related quantity—the SWAP-fidelity—and compare its properties with the standard Uhlmann–Jozsa fidelity. We also discuss the quantum optimal transport for general <i>d</i>-partite systems.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11040-023-09456-7.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-023-09456-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We analyze a quantum version of the Monge–Kantorovich optimal transport problem. The quantum transport cost related to a Hermitian cost matrix C is minimized over the set of all bipartite coupling states \(\rho ^{AB}\) with fixed reduced density matrices \(\rho ^A\) and \(\rho ^B\) of size m and n. The minimum quantum optimal transport cost \(\textrm{T}^Q_{C}(\rho ^A,\rho ^B)\) can be efficiently computed using semidefinite programming. In the case \(m=n\) the cost \(\textrm{T}^Q_{C}\) gives a semidistance if and only if C is positive semidefinite and vanishes exactly on the subspace of symmetric matrices. Furthermore, if C satisfies the above conditions, then \(\sqrt{\textrm{T}^Q_{C}}\) induces a quantum analogue of the Wasserstein-2 distance. Taking the quantum cost matrix \(C^Q\) to be the projector on the antisymmetric subspace, we provide a semi-analytic expression for \(\textrm{T}^Q_{C^Q}\) for any pair of single-qubit states and show that its square root yields a transport distance on the Bloch ball. Numerical simulations suggest that this property holds also in higher dimensions. Assuming that the cost matrix suffers decoherence and that the density matrices become diagonal, we study the quantum-to-classical transition of the Monge–Kantorovich distance, propose a continuous family of interpolating distances, and demonstrate that the quantum transport is cheaper than the classical one. Furthermore, we introduce a related quantity—the SWAP-fidelity—and compare its properties with the standard Uhlmann–Jozsa fidelity. We also discuss the quantum optimal transport for general d-partite systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
关于量子最优输运
我们分析了Monge-Kantorovich最优输运问题的量子版本。与厄米代价矩阵C相关的量子输运代价在所有二部耦合状态集\(\rho ^{AB}\)上最小,具有固定的减小密度矩阵\(\rho ^A\)和\(\rho ^B\),大小为m和n。最小量子最优输运代价\(\textrm{T}^Q_{C}(\rho ^A,\rho ^B)\)可以使用半定规划有效地计算。在\(m=n\)情况下,代价\(\textrm{T}^Q_{C}\)给出了一个半距离当且仅当C是半正定的并且在对称矩阵的子空间上完全消失。此外,如果C满足上述条件,则\(\sqrt{\textrm{T}^Q_{C}}\)诱导出Wasserstein-2距离的量子模拟。将量子代价矩阵\(C^Q\)作为反对称子空间上的投影,我们为任意一对单量子位态提供了\(\textrm{T}^Q_{C^Q}\)的半解析表达式,并证明了它的平方根产生了Bloch球上的传输距离。数值模拟表明,这一特性在高维中也成立。假设代价矩阵退相干,密度矩阵对角化,我们研究了蒙格-坎托洛维奇距离的量子到经典跃迁,提出了一个连续的插值距离族,并证明了量子输运比经典输运更便宜。此外,我们引入了一个相关的量——swap保真度,并将其与标准Uhlmann-Jozsa保真度进行了比较。我们还讨论了一般d部系统的量子最优输运。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1