{"title":"Measurements of acoustic response of car interion for structural excitations","authors":"Wojciech Paluch, M. Kłaczyński","doi":"10.29354/diag/156893","DOIUrl":null,"url":null,"abstract":"The transition from internal combustion to electric propulsion in cars presents component designers with new challenges in terms of noise reduction. Until now, components such as the suspension, its knocks were masked by the combustion engine or exhaust system. The absence of such significant sources, means that hitherto inaudible components are starting to become a nuisance. In order to reduce their noise, a number of optimisation solutions, both active and passive, are used. In order to do so, relevant measurements and data analysis must be carried out. This paper aims to present the acoustic characteristics of the interiors of two cars excited structurally in the vicinity of the front shock absorber mounting and by the operation of another component, the windscreen wipers on dry and wet windscreens. Measurements were made using 3D intensity probes based on acoustic particle velocity sensors. The results, in the form of both acoustic particle velocity and sound pressure characteristics and spectrograms, are presented comparatively for two types of car.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostyka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29354/diag/156893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
The transition from internal combustion to electric propulsion in cars presents component designers with new challenges in terms of noise reduction. Until now, components such as the suspension, its knocks were masked by the combustion engine or exhaust system. The absence of such significant sources, means that hitherto inaudible components are starting to become a nuisance. In order to reduce their noise, a number of optimisation solutions, both active and passive, are used. In order to do so, relevant measurements and data analysis must be carried out. This paper aims to present the acoustic characteristics of the interiors of two cars excited structurally in the vicinity of the front shock absorber mounting and by the operation of another component, the windscreen wipers on dry and wet windscreens. Measurements were made using 3D intensity probes based on acoustic particle velocity sensors. The results, in the form of both acoustic particle velocity and sound pressure characteristics and spectrograms, are presented comparatively for two types of car.
期刊介绍:
Diagnostyka – is a quarterly published by the Polish Society of Technical Diagnostics (PSTD). The journal “Diagnostyka” was established by the decision of the Presidium of Main Board of the Polish Society of Technical Diagnostics on August, 21st 2000 and replaced published since 1990 reference book of the PSTD named “Diagnosta”. In the years 2000-2003 there were issued annually two numbers of the journal, since 2004 “Diagnostyka” is issued as a quarterly. Research areas covered include: -theory of the technical diagnostics, -experimental diagnostic research of processes, objects and systems, -analytical, symptom and simulation models of technical objects, -algorithms, methods and devices for diagnosing, prognosis and genesis of condition of technical objects, -methods for detection, localization and identification of damages of technical objects, -artificial intelligence in diagnostics, neural nets, fuzzy systems, genetic algorithms, expert systems, -application of technical diagnostics, -diagnostic issues in mechanical and civil engineering, -medical and biological diagnostics with signal processing application, -structural health monitoring, -machines, -noise and vibration, -analysis of technical and civil systems.