Application of Machine Learning in the Precise and Cost-Effective Self-Compensation of the Thermal Errors of CNC Machine Tools – A Review

Q2 Engineering Journal of Machine Engineering Pub Date : 2022-08-08 DOI:10.36897/jme/152246
Robert Czwartosz, J. Jedrzejewski
{"title":"Application of Machine Learning in the Precise and Cost-Effective Self-Compensation of the Thermal Errors of CNC Machine Tools – A Review","authors":"Robert Czwartosz, J. Jedrzejewski","doi":"10.36897/jme/152246","DOIUrl":null,"url":null,"abstract":"The current development of production engineering takes place through the innovative improvement of machine tools and machining processes at the constantly growing application of intelligent self-improvement functions. Machine learning opens up possibilities for machine tool self-improvement in real time. This paper discusses the state of knowledge relating to the application of machine learning for precise and cost-effective thermal error self-compensation. Data acquisition and processing, models and model learning and self-learning methods are also considered. Three highly effective error compensation systems (supported with machine learning) are analysed and conclusions and recommendations for future research are formulated.","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36897/jme/152246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

The current development of production engineering takes place through the innovative improvement of machine tools and machining processes at the constantly growing application of intelligent self-improvement functions. Machine learning opens up possibilities for machine tool self-improvement in real time. This paper discusses the state of knowledge relating to the application of machine learning for precise and cost-effective thermal error self-compensation. Data acquisition and processing, models and model learning and self-learning methods are also considered. Three highly effective error compensation systems (supported with machine learning) are analysed and conclusions and recommendations for future research are formulated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习在数控机床热误差精确、经济自补偿中的应用综述
当前生产工程的发展是通过对机床和加工工艺的创新改进,在不断增长的智能自我完善功能应用中实现的。机器学习为机床实时自我改进开辟了可能性。本文讨论了与机器学习应用于精确且经济高效的热误差自补偿相关的知识现状。还考虑了数据采集和处理、模型以及模型学习和自学习方法。分析了三种高效的误差补偿系统(由机器学习支持),并为未来的研究提出了结论和建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Machine Engineering
Journal of Machine Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
2.70
自引率
0.00%
发文量
36
审稿时长
25 weeks
期刊介绍: ournal of Machine Engineering is a scientific journal devoted to current issues of design and manufacturing - aided by innovative computer techniques and state-of-the-art computer systems - of products which meet the demands of the current global market. It favours solutions harmonizing with the up-to-date manufacturing strategies, the quality requirements and the needs of design, planning, scheduling and production process management. The Journal'' s subject matter also covers the design and operation of high efficient, precision, process machines. The Journal is a continuator of Machine Engineering Publisher for five years. The Journal appears quarterly, with a circulation of 100 copies, with each issue devoted entirely to a different topic. The papers are carefully selected and reviewed by distinguished world famous scientists and practitioners. The authors of the publications are eminent specialists from all over the world and Poland. Journal of Machine Engineering provides the best assistance to factories and universities. It enables factories to solve their difficult problems and manufacture good products at a low cost and fast rate. It enables educators to update their teaching and scientists to deepen their knowledge and pursue their research in the right direction.
期刊最新文献
Fracture Mechanics-Based Modelling of Tool Wear in Machining Ti6Al4V Considering the Microstructure of Cemented Carbide Tools Fuzzy Logic in Risk Assessment of Production Machines Failure in Forming and Assembly Processes Influence of the Substrate Size on the Cooling Behavior and Properties of the DED-LB Process Automatic Detection of Axes for Turning Parts Enabling Federated Learning Services Using OPC UA, Linked Data and GAIA-X in Cognitive Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1