Performance analysis and exergy assessment of an inertance pulse tube cryocooler

IF 1.1 Q3 Engineering Journal of Thermal Engineering Pub Date : 2023-01-11 DOI:10.18186/thermal.1232462
Prateek D. Malwe, B. Gawali, Rustam Dhalait, Nandkishor S. Deshmukh
{"title":"Performance analysis and exergy assessment of an inertance pulse tube cryocooler","authors":"Prateek D. Malwe, B. Gawali, Rustam Dhalait, Nandkishor S. Deshmukh","doi":"10.18186/thermal.1232462","DOIUrl":null,"url":null,"abstract":"The world is facing the problems of the energy crisis. Thermal analysis and energy conservation of the engineering devices help to improve their performance. This paper conducted an experimental investigation for the performance analysis and exergy assessment of an Inertance Pulse Tube Cryocooler (IPTC) that uses working fluid -helium operated between 80 K cold end side temperature and room temperature.The variation of the different performance parameters like the effect of charge pressure, pulse tube volume, pulse tube length, etc., and its effect on the refrigerating effect isdescribed graphically. Exergy analysis involves the use and concepts of energy andexergy balances, enthalpy, entropy, and exergy calculations at various stages in thesystem. Exergy analysis identifies the zones of key exergy destruction that occurs insidethe system, which afterward can be subjected to its minimization to amend the systemperformance. The actual exergy efficiency value calculated for the overall system is 21.30 %. The decreasing order of exergy efficiency among the different components is acompressor (38.79 %), a hot end heat exchanger (6.19 %), regenerator, pulse tube andinertance tube (6 %), and cold end heat exchanger (2.70 %).","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1232462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

The world is facing the problems of the energy crisis. Thermal analysis and energy conservation of the engineering devices help to improve their performance. This paper conducted an experimental investigation for the performance analysis and exergy assessment of an Inertance Pulse Tube Cryocooler (IPTC) that uses working fluid -helium operated between 80 K cold end side temperature and room temperature.The variation of the different performance parameters like the effect of charge pressure, pulse tube volume, pulse tube length, etc., and its effect on the refrigerating effect isdescribed graphically. Exergy analysis involves the use and concepts of energy andexergy balances, enthalpy, entropy, and exergy calculations at various stages in thesystem. Exergy analysis identifies the zones of key exergy destruction that occurs insidethe system, which afterward can be subjected to its minimization to amend the systemperformance. The actual exergy efficiency value calculated for the overall system is 21.30 %. The decreasing order of exergy efficiency among the different components is acompressor (38.79 %), a hot end heat exchanger (6.19 %), regenerator, pulse tube andinertance tube (6 %), and cold end heat exchanger (2.70 %).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
惯性脉冲管制冷机的性能分析与火用评估
世界正面临着能源危机的问题。工程设备的热分析和节能有助于提高其性能。本文对使用工作流体氦气在80K冷端侧温度和室温之间运行的惰性脉冲管低温冷却器(IPTC)的性能分析和火用评估进行了实验研究。用图形描述了充气压力、脉冲管体积、脉冲管长度等不同性能参数的变化及其对制冷效果的影响。火用分析涉及系统各个阶段的能量和能量平衡、焓、熵和火用计算的使用和概念。火用分析确定了系统内部发生的关键火用破坏区域,之后可以对其进行最小化,以修改系统性能。整个系统的实际火用效率计算值为21.30%。不同部件(火用)效率的递减顺序为压缩机(38.79%)、热端换热器(6.19%)、再生器、脉冲管和确定管(6%)和冷端换热机(2.70%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
18.20%
发文量
61
审稿时长
4 weeks
期刊介绍: Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.
期刊最新文献
Experimental investigation of double-glazed double-pass solar airheater (DG-DPSAH) with multi-v ribs having trapezoidal roughness geometry Experimental evaluation of the effect of leakage in scroll compressor Performance enhancement of stepped solar still coupled with evacuated tube collector An experimental investigation to study the performance characteristics of heat pipe using aqueous hybrid nanofluids Heat transfer enhancement and applications of thermal energy storage techniques on solar air collectors: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1