In situ electrical resistivity and viscosity measurements of iron alloys under pressure using synchrotron X-ray radiography

IF 1.2 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY High Pressure Research Pub Date : 2020-12-28 DOI:10.1080/08957959.2020.1865343
A. Pommier, K. Leinenweber, H. Pirotte, T. Yu, Y. Wang
{"title":"In situ electrical resistivity and viscosity measurements of iron alloys under pressure using synchrotron X-ray radiography","authors":"A. Pommier, K. Leinenweber, H. Pirotte, T. Yu, Y. Wang","doi":"10.1080/08957959.2020.1865343","DOIUrl":null,"url":null,"abstract":"ABSTRACT We have developed a new type of experimental setup utilizing a multi-anvil large volume press and designed for simultaneous measurements of structure-sensitive thermophysical properties (diffraction, electrical resistivity, viscosity). This multi-probe capability was tested on iron alloys at 2 GPa and up to 1750 K. Phase transitions as detected by X-ray diffraction patterns are clearly associated with changes in the electrical response of the samples. In Fe-S liquids, viscosity measurements in the molten state indicate an increase in viscosity with increasing the amount of alloying agent. A correlation between electrical resistivity and viscosity from our data and previous works is observed. This multi-probe measurement capability improves the detection of solid-state transformations and solid-melt transitions, relates structural and electrical properties of geomaterials, and allows constraining the mobility of melts using viscosity data. This new setup advances research about melt distribution and mobility at conditions relevant to planetary interiors.","PeriodicalId":12864,"journal":{"name":"High Pressure Research","volume":"41 1","pages":"1 - 13"},"PeriodicalIF":1.2000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08957959.2020.1865343","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Pressure Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/08957959.2020.1865343","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

ABSTRACT We have developed a new type of experimental setup utilizing a multi-anvil large volume press and designed for simultaneous measurements of structure-sensitive thermophysical properties (diffraction, electrical resistivity, viscosity). This multi-probe capability was tested on iron alloys at 2 GPa and up to 1750 K. Phase transitions as detected by X-ray diffraction patterns are clearly associated with changes in the electrical response of the samples. In Fe-S liquids, viscosity measurements in the molten state indicate an increase in viscosity with increasing the amount of alloying agent. A correlation between electrical resistivity and viscosity from our data and previous works is observed. This multi-probe measurement capability improves the detection of solid-state transformations and solid-melt transitions, relates structural and electrical properties of geomaterials, and allows constraining the mobility of melts using viscosity data. This new setup advances research about melt distribution and mobility at conditions relevant to planetary interiors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用同步加速器x射线照相法测量铁合金在压力下的电阻率和粘度
摘要:我们开发了一种新型的实验装置,利用多砧大体积压力机,设计用于同时测量结构敏感的热物理性质(衍射、电阻率、粘度)。这种多探针能力在2GPa和高达1750K的铁合金上进行了测试。通过X射线衍射图检测到的相变显然与样品的电响应变化有关。在Fe-S液体中,熔融状态下的粘度测量表明,粘度随着合金剂量的增加而增加。从我们的数据和以前的工作中观察到电阻率和粘度之间的相关性。这种多探针测量能力提高了对固态转变和固态熔体转变的检测,关联了岩土材料的结构和电学性质,并允许使用粘度数据限制熔体的流动性。这一新装置推进了对行星内部相关条件下熔体分布和流动性的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
High Pressure Research
High Pressure Research 物理-物理:综合
CiteScore
3.80
自引率
5.00%
发文量
15
审稿时长
2 months
期刊介绍: High Pressure Research is the leading journal for research in high pressure science and technology. The journal publishes original full-length papers and short research reports of new developments, as well as timely review articles. It provides an important forum for the presentation of experimental and theoretical advances in high pressure science in subjects such as: condensed matter physics and chemistry geophysics and planetary physics synthesis of new materials chemical kinetics under high pressure industrial applications shockwaves in condensed matter instrumentation and techniques the application of pressure to food / biomaterials Theoretical papers of exceptionally high quality are also accepted.
期刊最新文献
Synchrotron x-ray diffraction and DFT study of non-centrosymmetric EuRhGe3 under high pressure EBS status of the large-volume press at beamline ID06-LVP Extreme conditions X-ray diffraction and imaging beamline ID15B on the ESRF extremely brilliant source In situ X-ray absorption spectroscopy using the FAME autoclave: a window into fluid-mineral-melt interactions in the Earth’s crust Science under extreme conditions at the ESRF Extremely Brilliant Source
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1