Singular Points and Singular Curves in von Kármán Elastic Surfaces

IF 1.8 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Journal of Elasticity Pub Date : 2023-06-06 DOI:10.1007/s10659-022-09969-2
Animesh Pandey, Anurag Gupta
{"title":"Singular Points and Singular Curves in von Kármán Elastic Surfaces","authors":"Animesh Pandey,&nbsp;Anurag Gupta","doi":"10.1007/s10659-022-09969-2","DOIUrl":null,"url":null,"abstract":"<div><p>Mechanical fields over thin elastic surfaces can develop singularities at isolated points and curves in response to constrained deformations (e.g., crumpling and folding of paper), singular body forces and couples, distributions of isolated defects (e.g., dislocations and disclinations), and singular metric anomaly fields (e.g., growth and thermal strains). With such concerns as our motivation, we model thin elastic surfaces as von Kármán plates and generalize the classical von Kármán equations, which are restricted to smooth fields, to fields which are piecewise smooth, and can possibly concentrate at singular curves, in addition to being singular at isolated points. The inhomogeneous sources to the von Kármán equations, given in terms of plastic strains, defect induced incompatibility, and body forces, are likewise allowed to be singular at isolated points and curves in the domain. The generalized framework is used to discuss the singular nature of deformation and stress arising due to conical deformations, folds, and folds terminating at a singular point.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-022-09969-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanical fields over thin elastic surfaces can develop singularities at isolated points and curves in response to constrained deformations (e.g., crumpling and folding of paper), singular body forces and couples, distributions of isolated defects (e.g., dislocations and disclinations), and singular metric anomaly fields (e.g., growth and thermal strains). With such concerns as our motivation, we model thin elastic surfaces as von Kármán plates and generalize the classical von Kármán equations, which are restricted to smooth fields, to fields which are piecewise smooth, and can possibly concentrate at singular curves, in addition to being singular at isolated points. The inhomogeneous sources to the von Kármán equations, given in terms of plastic strains, defect induced incompatibility, and body forces, are likewise allowed to be singular at isolated points and curves in the domain. The generalized framework is used to discuss the singular nature of deformation and stress arising due to conical deformations, folds, and folds terminating at a singular point.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
von Kármán弹性曲面的奇异点和奇异曲线
薄弹性表面上的力学场可以在孤立的点和曲线上发展奇点,以响应约束变形(例如,纸张的皱缩和折叠),奇异体力和偶,孤立缺陷的分布(例如,位错和斜位)和奇异度量异常场(例如,生长和热应变)。考虑到我们的动机,我们将薄弹性表面建模为von Kármán板,并将经典的von Kármán方程推广到光滑场,分段光滑场,可能集中在奇异曲线上,除了在孤立点上是奇异的。von Kármán方程的非齐次源,以塑性应变、缺陷诱导不相容和体力的形式给出,同样允许在域中的孤立点和曲线上是奇异的。广义框架用于讨论由于锥形变形、褶皱和褶皱终止于奇点而引起的变形和应力的奇异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Elasticity
Journal of Elasticity 工程技术-材料科学:综合
CiteScore
3.70
自引率
15.00%
发文量
74
审稿时长
>12 weeks
期刊介绍: The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.
期刊最新文献
Initial Stresses in a Twisted Porous Fluid-Saturated Cylinder New Perspectives on Torsional Rigidity and Polynomial Approximations of z-bar A Morphoelastic Shell Theory of Biological Invagination in Embryos A Direct Approach to the Polar Representation of Plane Tensors The Micro-Bond Potential and Stress Tensor in Peridynamics Revisited
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1