Investigation of mechanical properties and surface roughness of friction stir welded AA6061-T651

IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Mechanical and Materials Engineering Pub Date : 2020-06-06 DOI:10.1186/s40712-020-00119-x
Rajesh Kumar Bhushan, Deepak Sharma
{"title":"Investigation of mechanical properties and surface roughness of friction stir welded AA6061-T651","authors":"Rajesh Kumar Bhushan,&nbsp;Deepak Sharma","doi":"10.1186/s40712-020-00119-x","DOIUrl":null,"url":null,"abstract":"<p>Friction stir welding (FSW) of 6-mm-thick plates of AA6061-T651 was carried out using a simple cylindrical pin tool. The impact of welding factors (rotational speed, welding speed) on tensile properties, microhardness, and surface roughness of FSW joints was investigated. Ultimate tensile strength (UTS), yield strength, and % elongation of AA6061-T651 base plate as well as FSW joints were found out using a universal testing machine (UTM). Maximum value of UTS and yield strength were achieved at rotational speed of 1400?rpm and welding speed of 20?mm/min. Minimum surface roughness was reached at rotational speeds of 1400?rpm and welding speed of 20?mm/min. Microstructural evolutions in the friction stir welded (FSWed) joint and microhardness profile were also determined. Maximum hardness of HV 120 was acquired for the stir zone (SZ). Hence, attainment of the maximum tensile strength, microhardness, and minimum surface roughness during FSW is a desired method to improve the service life and suitability of AA6061-T651.</p>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"15 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2020-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40712-020-00119-x","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-020-00119-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 14

Abstract

Friction stir welding (FSW) of 6-mm-thick plates of AA6061-T651 was carried out using a simple cylindrical pin tool. The impact of welding factors (rotational speed, welding speed) on tensile properties, microhardness, and surface roughness of FSW joints was investigated. Ultimate tensile strength (UTS), yield strength, and % elongation of AA6061-T651 base plate as well as FSW joints were found out using a universal testing machine (UTM). Maximum value of UTS and yield strength were achieved at rotational speed of 1400?rpm and welding speed of 20?mm/min. Minimum surface roughness was reached at rotational speeds of 1400?rpm and welding speed of 20?mm/min. Microstructural evolutions in the friction stir welded (FSWed) joint and microhardness profile were also determined. Maximum hardness of HV 120 was acquired for the stir zone (SZ). Hence, attainment of the maximum tensile strength, microhardness, and minimum surface roughness during FSW is a desired method to improve the service life and suitability of AA6061-T651.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
搅拌摩擦焊AA6061-T651的力学性能和表面粗糙度研究
采用简单的圆柱销工具对6 mm厚的AA6061-T651板进行了搅拌摩擦焊接。研究了焊接转速、焊接速度对FSW接头拉伸性能、显微硬度和表面粗糙度的影响。采用万能试验机(UTM)测定了AA6061-T651基板及FSW接头的极限抗拉强度(UTS)、屈服强度和伸长率。UTS和屈服强度在转速为1400?RPM和焊接速度为20mm /min。当转速为1400?RPM和焊接速度为20mm /min。研究了搅拌摩擦焊接接头的显微组织演变和显微硬度分布。搅拌区(SZ)硬度最高可达hv120。因此,在FSW过程中获得最大的抗拉强度、显微硬度和最小的表面粗糙度是提高AA6061-T651的使用寿命和适用性的理想方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
1
审稿时长
13 weeks
期刊最新文献
Synthesis and characterization of titanium oxynitride catalyst via direct ammonia nitridation of titanium polyacrylate for oxygen reduction reaction Some studies on Abelmoschus esculentus (Indian Okra) fiber characteristics Geothermo-mechanical energy conversion using shape memory alloy heat engine Graphitic carbon nitride-modified cerium ferrite: an efficient photocatalyst for the degradation of ciprofloxacin, ampicillin, and erythromycin in aqueous solution Development of glass sealants for proton conducting ceramic cells: materials, concepts and challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1