{"title":"Numerical study on the effects of oblique impact on the ballistic behavior of 3D angle interlock woven fabric","authors":"Q. Wei, Dan Yang, Zhongxiang Pan","doi":"10.1177/10567895231187672","DOIUrl":null,"url":null,"abstract":"3D angle interlock woven fabric(3DAWF) has great potential for impact protection. This paper investigates the ballistic mechanism of 3DAWF(5 layers of angle interlock – through the thickness) under normal and oblique impact. The full-size mesoscale model of 3DAWF under different impact directions and angles was established and systematically studied to reveal the 3DAWFs’ ballistic mechanism. The numerical studies of 3DAWF subjected to 0°, 15°, 30°, 45°, and 60° oblique impacts from two impact directions along 3DAWF structure configurations were carried out. We found that 3DAWFs’ ballistic performance increases non-linearly with impact obliquity. The ballistic mechanisms change with impact directions because of 3DAWFs’ anisotropic structure. This work also demonstrates the impact damage mechanism, energy absorption evolution, and stress wave distribution of the 3DAWF under oblique high-velocity impact. The findings are constructive for the 3DAWF applicated in ballistic protection.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"32 1","pages":"1099 - 1121"},"PeriodicalIF":4.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895231187672","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
3D angle interlock woven fabric(3DAWF) has great potential for impact protection. This paper investigates the ballistic mechanism of 3DAWF(5 layers of angle interlock – through the thickness) under normal and oblique impact. The full-size mesoscale model of 3DAWF under different impact directions and angles was established and systematically studied to reveal the 3DAWFs’ ballistic mechanism. The numerical studies of 3DAWF subjected to 0°, 15°, 30°, 45°, and 60° oblique impacts from two impact directions along 3DAWF structure configurations were carried out. We found that 3DAWFs’ ballistic performance increases non-linearly with impact obliquity. The ballistic mechanisms change with impact directions because of 3DAWFs’ anisotropic structure. This work also demonstrates the impact damage mechanism, energy absorption evolution, and stress wave distribution of the 3DAWF under oblique high-velocity impact. The findings are constructive for the 3DAWF applicated in ballistic protection.
期刊介绍:
Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics.
Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department.
The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).