{"title":"Scanning transmission X-ray spectromicroscopy: A nanotool to probe hematite nanorods for solar water splitting","authors":"Stefan Stanescu , Dana Stanescu , Adam Hitchcock","doi":"10.1016/j.elspec.2023.147334","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>We report a scanning transmission X-ray microscopy (STXM) study of hematite </span>nanorods<span>, prototypical photoanode used in solar water splitting. Hematite nanorods were obtained by hydrothermal growth from aqueous solutions using FeCl</span></span><sub>3</sub><span> as precursor. Potentials for onset of water splitting are smaller using this synthesis method, compared to values reported for hematite photoanodes obtained by epitaxial growth. STXM revealed the presence of a hexahydrate iron chloride phase at the surface of the nanorods, which is linked to the low onset potential values. We detail the quantification approach that revealed the specific microstructure of individual hematite nanorods.</span></p></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"265 ","pages":"Article 147334"},"PeriodicalIF":1.8000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electron Spectroscopy and Related Phenomena","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0368204823000518","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
We report a scanning transmission X-ray microscopy (STXM) study of hematite nanorods, prototypical photoanode used in solar water splitting. Hematite nanorods were obtained by hydrothermal growth from aqueous solutions using FeCl3 as precursor. Potentials for onset of water splitting are smaller using this synthesis method, compared to values reported for hematite photoanodes obtained by epitaxial growth. STXM revealed the presence of a hexahydrate iron chloride phase at the surface of the nanorods, which is linked to the low onset potential values. We detail the quantification approach that revealed the specific microstructure of individual hematite nanorods.
期刊介绍:
The Journal of Electron Spectroscopy and Related Phenomena publishes experimental, theoretical and applied work in the field of electron spectroscopy and electronic structure, involving techniques which use high energy photons (>10 eV) or electrons as probes or detected particles in the investigation.