Progress in wafer bonding technology towards MEMS, high-power electronics, optoelectronics, and optofluidics

IF 6.7 3区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Optomechatronics Pub Date : 2020-01-01 DOI:10.1080/15599612.2020.1857890
Jikai Xu, Yunchen Du, Yanhong Tian, Chenxi Wang
{"title":"Progress in wafer bonding technology towards MEMS, high-power electronics, optoelectronics, and optofluidics","authors":"Jikai Xu, Yunchen Du, Yanhong Tian, Chenxi Wang","doi":"10.1080/15599612.2020.1857890","DOIUrl":null,"url":null,"abstract":"Abstract Wafer bonding is an attractive technology that can join homo/heterogeneous materials into one composite. It has a wide range of applications in the micro-electro-mechanical system (MEMS), integrated circuit, consumer and power electronics, micro/nanofluidics, etc. Since all devices on the same wafer are sealed and tested at wafer size, it brings lots of benefits compared with the component-level packaging, such as substantial savings in time, materials, and labor. In this review, we firstly introduce the low- and room-temperature Si bonding and their applications in MEMS fabrication. Subsequently, we present applications of the third-generation semiconductor bonding towards optoelectronics. Due to the research in the electro-optical modulation of lithium niobate (LiNbO3) has made revolutionary progress in recent years, we also show the bonding method towards single-crystal LiNbO3 thin-film fabrication. Finally, we set our sights on the bonding of infrared materials, which might be the next research hotspot for the emerging ultrasensitive sensors.","PeriodicalId":50296,"journal":{"name":"International Journal of Optomechatronics","volume":"14 1","pages":"94 - 118"},"PeriodicalIF":6.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15599612.2020.1857890","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optomechatronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15599612.2020.1857890","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 18

Abstract

Abstract Wafer bonding is an attractive technology that can join homo/heterogeneous materials into one composite. It has a wide range of applications in the micro-electro-mechanical system (MEMS), integrated circuit, consumer and power electronics, micro/nanofluidics, etc. Since all devices on the same wafer are sealed and tested at wafer size, it brings lots of benefits compared with the component-level packaging, such as substantial savings in time, materials, and labor. In this review, we firstly introduce the low- and room-temperature Si bonding and their applications in MEMS fabrication. Subsequently, we present applications of the third-generation semiconductor bonding towards optoelectronics. Due to the research in the electro-optical modulation of lithium niobate (LiNbO3) has made revolutionary progress in recent years, we also show the bonding method towards single-crystal LiNbO3 thin-film fabrication. Finally, we set our sights on the bonding of infrared materials, which might be the next research hotspot for the emerging ultrasensitive sensors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
晶圆键合技术在MEMS、高功率电子、光电子和光流控领域的进展
摘要晶片键合是一种很有吸引力的技术,可以将同质/异质材料连接成一种复合材料。它在微机电系统(MEMS)、集成电路、消费电子和电力电子、微/纳米流体等领域有着广泛的应用。由于同一晶圆上的所有设备都是按照晶圆尺寸进行密封和测试的,因此与组件级封装相比,它带来了许多好处,例如在时间、材料和劳动力方面大幅节省。在这篇综述中,我们首先介绍了低温和室温硅键合及其在MEMS制造中的应用。随后,我们介绍了第三代半导体键合在光电子领域的应用。由于近年来铌酸锂(LiNbO3)的电光调制研究取得了革命性的进展,我们还展示了单晶LiNbO3薄膜的键合方法。最后,我们将目光投向了红外材料的键合,这可能是新兴超灵敏传感器的下一个研究热点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Optomechatronics
International Journal of Optomechatronics 工程技术-工程:电子与电气
CiteScore
9.30
自引率
0.00%
发文量
3
审稿时长
3 months
期刊介绍: International Journal of Optomechatronics publishes the latest results of multidisciplinary research at the crossroads between optics, mechanics, fluidics and electronics. Topics you can submit include, but are not limited to: -Adaptive optics- Optomechanics- Machine vision, tracking and control- Image-based micro-/nano- manipulation- Control engineering for optomechatronics- Optical metrology- Optical sensors and light-based actuators- Optomechatronics for astronomy and space applications- Optical-based inspection and fault diagnosis- Micro-/nano- optomechanical systems (MOEMS)- Optofluidics- Optical assembly and packaging- Optical and vision-based manufacturing, processes, monitoring, and control- Optomechatronics systems in bio- and medical technologies (such as optical coherence tomography (OCT) systems or endoscopes and optical based medical instruments)
期刊最新文献
Laboratory demonstration of single-camera PPPP wavefront sensing using neural networks Control of a quasi-static MEMS Mirror for raster scanning projection applications Resonator-based near perfect metamaterial absorber with high EMI shielding for Wi-Fi and 5G applications Optofluidic sorting of microparticles using Airy beams Review of sensing and actuation technologies – from optical MEMS and nanophotonics to photonic nanosystems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1