A Potential-Based Quantization Procedure of the Damped Oscillator

Q2 Physics and Astronomy Quantum Reports Pub Date : 2022-04-06 DOI:10.3390/quantum4040028
Ferenc M'arkus, Katalin Gamb'ar
{"title":"A Potential-Based Quantization Procedure of the Damped Oscillator","authors":"Ferenc M'arkus, Katalin Gamb'ar","doi":"10.3390/quantum4040028","DOIUrl":null,"url":null,"abstract":"Today, two of the most prosperous fields of physics are quantum computing and spintronics. In both, the loss of information and dissipation play a crucial role. In the present work, we formulate the quantization of the dissipative oscillator, which aids the understanding of the abovementioned issues, and creates a theoretical frame to overcome these issues in the future. Based on the Lagrangian framework of the damped spring system, the canonically conjugated pairs and the Hamiltonian of the system are obtained; then, the quantization procedure can be started and consistently applied. As a result, the damping quantum wave equation of the dissipative oscillator is deduced, and an exact damping wave solution of this equation is obtained. Consequently, we arrive at an irreversible quantum theory by which the quantum losses can be described.","PeriodicalId":34124,"journal":{"name":"Quantum Reports","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/quantum4040028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 3

Abstract

Today, two of the most prosperous fields of physics are quantum computing and spintronics. In both, the loss of information and dissipation play a crucial role. In the present work, we formulate the quantization of the dissipative oscillator, which aids the understanding of the abovementioned issues, and creates a theoretical frame to overcome these issues in the future. Based on the Lagrangian framework of the damped spring system, the canonically conjugated pairs and the Hamiltonian of the system are obtained; then, the quantization procedure can be started and consistently applied. As a result, the damping quantum wave equation of the dissipative oscillator is deduced, and an exact damping wave solution of this equation is obtained. Consequently, we arrive at an irreversible quantum theory by which the quantum losses can be described.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于电位的阻尼振荡器量化方法
今天,物理学中最繁荣的两个领域是量子计算和自旋电子学。在这两者中,信息的丢失和耗散起着至关重要的作用。在目前的工作中,我们提出了耗散振子的量子化,这有助于理解上述问题,并为未来克服这些问题创造了一个理论框架。基于阻尼弹簧系统的拉格朗日框架,得到了系统的经典共轭对和哈密顿量;然后,可以开始并一致地应用量化过程。由此,导出了耗散振子的阻尼量子波方程,得到了该方程的精确阻尼波解。因此,我们得出了一个不可逆的量子理论,可以用它来描述量子损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum Reports
Quantum Reports Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
3.30
自引率
0.00%
发文量
33
审稿时长
10 weeks
期刊最新文献
Nitrogen-Related High-Spin Vacancy Defects in Bulk (SiC) and 2D (hBN) Crystals: Comparative Magnetic Resonance (EPR and ENDOR) Study Fisher Information for a System Composed of a Combination of Similar Potential Models A Normalization Condition for the Probability Current in Some Remarkable Cases The Many-Worlds Interpretation of Quantum Mechanics: Current Status and Relation to Other Interpretations Tomographic Universality of the Discrete Wigner Function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1