Regression Modeling for the Prediction of Hydrogen Atom Transfer Barriers in Cytochrome P450 from Semi-empirically Derived Descriptors

IF 6.1 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemistry methods : new approaches to solving problems in chemistry Pub Date : 2022-05-17 DOI:10.1002/cmtd.202100108
Phillip W. Gingrich, Dr. Justin B. Siegel, Dr. Dean J. Tantillo
{"title":"Regression Modeling for the Prediction of Hydrogen Atom Transfer Barriers in Cytochrome P450 from Semi-empirically Derived Descriptors","authors":"Phillip W. Gingrich,&nbsp;Dr. Justin B. Siegel,&nbsp;Dr. Dean J. Tantillo","doi":"10.1002/cmtd.202100108","DOIUrl":null,"url":null,"abstract":"<p>The calculation of hydrogen atom transfer (HAT) barriers within the cytochrome P450 catalytic cycle is of central importance for the prediction of metabolites formed from medicinally relevant compounds. We report the accurate estimation of hydrogen atom transfer barriers using inexpensive descriptors computed for a panel of 21 compounds. By a simple univariate linear regression between barriers previously computed using density functional theory (DFT) and newly computed “frozen radical” bond dissociation energies using the GFN2-xTB method, a mean absolute error of 1 kcal mol<sup>−1</sup> is achieved. Other affordable levels of theory are studied to assess differences in performance and computational cost. Multiple linear regression incorporating additional descriptors using GFN2-xTB is shown to predict HAT barriers with mean absolute errors of 0.82 kcal mol<sup>−1</sup>. With computing times in milliseconds on modest computing hardware, this systematic approach is accessible and extensible to large scale screening workflows.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202100108","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry methods : new approaches to solving problems in chemistry","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmtd.202100108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

The calculation of hydrogen atom transfer (HAT) barriers within the cytochrome P450 catalytic cycle is of central importance for the prediction of metabolites formed from medicinally relevant compounds. We report the accurate estimation of hydrogen atom transfer barriers using inexpensive descriptors computed for a panel of 21 compounds. By a simple univariate linear regression between barriers previously computed using density functional theory (DFT) and newly computed “frozen radical” bond dissociation energies using the GFN2-xTB method, a mean absolute error of 1 kcal mol−1 is achieved. Other affordable levels of theory are studied to assess differences in performance and computational cost. Multiple linear regression incorporating additional descriptors using GFN2-xTB is shown to predict HAT barriers with mean absolute errors of 0.82 kcal mol−1. With computing times in milliseconds on modest computing hardware, this systematic approach is accessible and extensible to large scale screening workflows.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半经验衍生描述符预测细胞色素P450中氢原子转移屏障的回归模型
计算细胞色素P450催化循环内的氢原子转移(HAT)屏障对于预测由医学相关化合物形成的代谢物至关重要。我们报告了使用便宜的描述符计算的21个化合物面板氢原子转移屏障的准确估计。通过对先前使用密度泛函理论(DFT)计算的势垒和使用GFN2-xTB方法新计算的“冻结自由基”键解离能进行简单的单变量线性回归,平均绝对误差为1 kcal mol−1。研究了其他可负担的理论水平,以评估性能和计算成本的差异。使用GFN2-xTB结合附加描述符的多元线性回归可以预测HAT屏障,平均绝对误差为0.82 kcal mol−1。在一般的计算硬件上,计算时间以毫秒为单位,这种系统方法可以访问并扩展到大规模筛选工作流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.30
自引率
0.00%
发文量
0
期刊最新文献
Cover Feature: (Chem. Methods 10/2024) Cover Picture: (Chem. Methods 9/2024) Rescaling NMR for a Larger Deployment in Drug Discovery: Hyperpolarization and Benchtop NMR as Potential Game-Changers Insights into CO2 Diffusion on Zeolite 13X via Frequency Response Technique Cover Picture: (Chem. Methods 7-8/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1