ASSESSMENT OF RECENT GLOBAL GRAVITY FIELD MODELS BY GNSS/LEVELLING DATA

IF 3.1 Q2 ENGINEERING, GEOLOGICAL International Journal of Engineering and Geosciences Pub Date : 2022-06-24 DOI:10.26833/ijeg.1070042
N. Yilmaz
{"title":"ASSESSMENT OF RECENT GLOBAL GRAVITY FIELD MODELS BY GNSS/LEVELLING DATA","authors":"N. Yilmaz","doi":"10.26833/ijeg.1070042","DOIUrl":null,"url":null,"abstract":"This paper focuses on making a comparing of GNSS/Levelling data and data obtained from global geopotential models. For comparison, geoid undulations obtained by GNSS/Levelling method and geoid undulations obtained from global geopotential models have been used. \nAs global geopotential models, SGG-UGM-2, XGM2019e_2159, GO_CONS_GCF_2_TIM_R6e, ITSG-Grace2018s, EIGEN-GRGS.RL04.MEAN-FIELD, GOCO06s, GO_CONS_GCF_2_TIM_R6, GO_CONS_GCF_2_DIR_R6 global gravity field models are used. The data sets used in the development of the models are altimetry, satellite (e.g., GRACE, GOCE, LAGEOS), ground data (e.g., terrestrial, shipborne and airborne measurements) and topography. The differences between the geoid undulations obtained from the GNSS/Levelling method and the geoid undulations obtained from the global geoid models have been taken. Some statistical criteria for these differences have been calculated. These criteria, such as smallest, biggest, average, standard deviation, Square Mean RMS statistical values of deviations between GNSS/Levelling geoid and global geopotential models, are taken into consideration when comparing the models. According to the comparison, the global gravity field model that best fits the GNSS/Levelling is selected.","PeriodicalId":42633,"journal":{"name":"International Journal of Engineering and Geosciences","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26833/ijeg.1070042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on making a comparing of GNSS/Levelling data and data obtained from global geopotential models. For comparison, geoid undulations obtained by GNSS/Levelling method and geoid undulations obtained from global geopotential models have been used. As global geopotential models, SGG-UGM-2, XGM2019e_2159, GO_CONS_GCF_2_TIM_R6e, ITSG-Grace2018s, EIGEN-GRGS.RL04.MEAN-FIELD, GOCO06s, GO_CONS_GCF_2_TIM_R6, GO_CONS_GCF_2_DIR_R6 global gravity field models are used. The data sets used in the development of the models are altimetry, satellite (e.g., GRACE, GOCE, LAGEOS), ground data (e.g., terrestrial, shipborne and airborne measurements) and topography. The differences between the geoid undulations obtained from the GNSS/Levelling method and the geoid undulations obtained from the global geoid models have been taken. Some statistical criteria for these differences have been calculated. These criteria, such as smallest, biggest, average, standard deviation, Square Mean RMS statistical values of deviations between GNSS/Levelling geoid and global geopotential models, are taken into consideration when comparing the models. According to the comparison, the global gravity field model that best fits the GNSS/Levelling is selected.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用gnss /水准资料评估最近的全球重力场模型
本文重点对GNSS/Leveling数据与全球位势模型的数据进行了比较。为了进行比较,使用了GNSS/Leveling方法获得的大地水准面起伏和全球位势模型获得的大地水平面起伏。作为全球位势模型,使用了SGG-UGM-2、XGM2019e_2159、GO_CONS_GCF_2_TIM_R6e、ITSG-GGrace2018s、EIGEN-GRGS.RL04.MEAN-FIELD、GOCO06s、GO_CONS_GCF_2_TIM_R6、GO_CONSF_GCF_2_DIR_R6全球重力场模型。模型开发中使用的数据集包括测高、卫星(如GRACE、GOCE、LAGEOS)、地面数据(如陆地、船载和机载测量)和地形。采用GNSS/Leveling方法获得的大地水准面起伏与全球大地水准面模型获得的大地水平面起伏之间的差异。已经计算出了这些差异的一些统计标准。在比较模型时,考虑了这些标准,如GNSS/水准面大地水准面和全球位势模型之间偏差的最小、最大、平均、标准差、均方RMS统计值。通过比较,选择了最适合GNSS/Leveling的全球重力场模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
12
审稿时长
30 weeks
期刊最新文献
A benchmark dataset for deep learning-based airplane detection: HRPlanes Methodology of real-time 3D point cloud mapping with UAV lidar Proliferation of Dichotomy Urban Settlements Plight: Land Governance And Sustainable Built Environment In Tanzania Spatio-Temporal monitoring of Qeshm mangrove forests through machine learning classification of SAR and Optical images on Google Earth Engine Transformation from e-Government to e-land administration in Turkey: A SWOT-based assessment analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1