{"title":"Research and Development of Maglev and Application of Related Technologies to Conventional Railways","authors":"Kenichi Nagashima, T. Sasakawa","doi":"10.2219/rtriqr.62.3_163","DOIUrl":null,"url":null,"abstract":"This paper presents recent findings from RTRI regarding the development of fundamental technologies for maglev (magnetic levitation) and the application of maglev technology to the conventional railway sys tem. This paper also introduces the latest developments regarding the future use of maglev, information re ported at WCRR2019, and related news from and outside Japan. (SC-MAGLEV), long-term durability of high-temperature superconducting magnets, wireless power supply systems for on-board power supply, research on passenger comfort, and new vehicle models [5]. In a lecture entitled “Maglev Ground Transportation with High-Temperature Super-conductors (HTS),” Dr. Werfel of ATZ in Germany began a technical discussion on two types of maglev technology: normal conducting maglev “Transrapid” which was developed in Germany and put to practical use in Shanghai, and the superconducting maglev “SCMAGLEV,” developed in Japan. Dr. Werfel also talked about the advantages and development challeng-es of replacing low-temperature superconducting magnets with high-temperature ones in maglev, high-temperature superconducting magnets using Bi2223 high-temperature superconducting wire developed by JR Central, and high-temperature superconducting magnets using REBCO (rare-earth-based) high-temperature superconducting wire, being developed by RTRI. Finally, Dr. Werfel in-QR of and introducing higher speeds. Approximately half all R & D for vehicles is concentrated on mainly focusing on research on running safety evaluation methods such as flange climb derailment and crashworthiness evaluation. To improve the quality of railway services for passengers, other research and development aims to improve ride comfort by reducing vibration, developing tilting technology and noise reduction. This paper gives an overview of current research and development being conducted in the Vehicle Structure Technology Division, the status of crashworthiness evaluation, and of work to improve ride comfort.","PeriodicalId":52445,"journal":{"name":"Quarterly Report of RTRI (Railway Technical Research Institute) (Japan)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Report of RTRI (Railway Technical Research Institute) (Japan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2219/rtriqr.62.3_163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents recent findings from RTRI regarding the development of fundamental technologies for maglev (magnetic levitation) and the application of maglev technology to the conventional railway sys tem. This paper also introduces the latest developments regarding the future use of maglev, information re ported at WCRR2019, and related news from and outside Japan. (SC-MAGLEV), long-term durability of high-temperature superconducting magnets, wireless power supply systems for on-board power supply, research on passenger comfort, and new vehicle models [5]. In a lecture entitled “Maglev Ground Transportation with High-Temperature Super-conductors (HTS),” Dr. Werfel of ATZ in Germany began a technical discussion on two types of maglev technology: normal conducting maglev “Transrapid” which was developed in Germany and put to practical use in Shanghai, and the superconducting maglev “SCMAGLEV,” developed in Japan. Dr. Werfel also talked about the advantages and development challeng-es of replacing low-temperature superconducting magnets with high-temperature ones in maglev, high-temperature superconducting magnets using Bi2223 high-temperature superconducting wire developed by JR Central, and high-temperature superconducting magnets using REBCO (rare-earth-based) high-temperature superconducting wire, being developed by RTRI. Finally, Dr. Werfel in-QR of and introducing higher speeds. Approximately half all R & D for vehicles is concentrated on mainly focusing on research on running safety evaluation methods such as flange climb derailment and crashworthiness evaluation. To improve the quality of railway services for passengers, other research and development aims to improve ride comfort by reducing vibration, developing tilting technology and noise reduction. This paper gives an overview of current research and development being conducted in the Vehicle Structure Technology Division, the status of crashworthiness evaluation, and of work to improve ride comfort.